Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optomechanical cooling with simultaneous intracavity and extracavity squeezed light (2403.01179v1)

Published 2 Mar 2024 in quant-ph

Abstract: We propose a novel and experimentally feasible approach to achieve high-efficiency ground-state cooling of a mechanical oscillator in an optomechanical system under the deeply unresolved sideband condition with the assistance of both intracavity and extracavity squeezing. In the scheme, a degenerate optical parametric amplifier is placed inside the optical cavity, generating the intracavity squeezing; besides, the optical cavity is driven by externally generated squeezing light, namely the extracavity squeezing. The quantum interference effect generated by intracavity squeezing and extracavity squeezing can completely suppress the non-resonant Stokes heating process while greatly enhancing the anti-Stokes cooling process. Therefore, the joint-squeezing scheme is capable of cooling the mechanical oscillators to their quantum ground state in a regime far away from the resolved sideband condition. Compared with other traditional optomechanical cooling schemes, the single-photon cooling rate in this joint-squeezing scheme can be tremendously enlarged by nearly three orders of magnitude. At the same time, the coupling strength required to achieve ground-state cooling can be significantly reduced. This scheme is promising for cooling large-mass and low-frequency mechanical oscillators, which provides a prerequisite for preparing and manipulating non-classical states in macroscopic quantum systems and lays a significant foundation for quantum manipulation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity optomechanics, Rev. Mod. Phys. 86, 1391 (2014).
  2. M. Aspelmeyer, P. Meystre, and K. Schwab, Quantum optomechanics, Phys. Today 65, 29 (2012).
  3. F. Marquardt and S. M. Girvin, Optomechanics, Physics 2, 40 (2009).
  4. M. Metcalfe, Applications of cavity optomechanics, Appl. Phys. Rev. 1, 031105 (2014).
  5. V. B. Braginsky and A. B. Manukin, Ponderomotive effects of electromagnetic radiation, Sov. Phys. JETP 25, 653 (1967).
  6. V. B. Braginsky, A. B. Manukin, and M. Y. Tikhonov, Investigation of dissipative ponderomotive effects of electromagnetic radiation, Sov. Phys. JETP 31, 829 (1970).
  7. T. P. Purdy, R. W. Peterson, and C. A. Regal, Observation of radiation pressure shot noise on a macroscopic object, Science 339, 801 (2013).
  8. T. E. Lee and M. C. Cross, Quantum-classical transition of correlations of two coupled cavities, Phys. Rev. A 88, 013834 (2013).
  9. N. V. Lavrik and P. G. Datskos, Femtogram mass detection using photothermally actuated nanomechanical resonators, Appl. Phys. Lett. 82, 2697 (2003).
  10. D. Karabacak, T. Kouh, and K. L. Ekinci, Analysis of optical interferometric displacement detection in nanoelectromechanical systems, J. Appl. Phys. 98, 124309 (2005).
  11. Y. D. Wang and A. A. Clerk, Using interference for high fidelity quantum state transfer in optomechanics, Phys. Rev. Lett. 108, 153603 (2012).
  12. L. Tian, Adiabatic state conversion and pulse transmission in optomechanical systems, Phys. Rev. Lett. 108, 153604 (2012).
  13. M. Li, W. H. P. Pernice, and H. X. Tang, Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides, Phys. Rev. Lett. 103, 223901 (2009).
  14. F. Elste, S. M. Girvin, and A. A. Clerk, Quantum noise interference and backaction cooling in cavity nanomechanics, Phys. Rev. Lett. 102, 207209 (2009).
  15. A. Xuereb, R. Schnabel, and K. Hammerer, Dissipative optomechanics in a michelson-sagnac interferometer, Phys. Rev. Lett. 107, 213604 (2011).
  16. T. Ojanen and K. Børkje, Ground-state cooling of mechanical motion in the unresolved sideband regime by use of optomechanically induced transparency, Phys. Rev. A 90, 013824 (2014).
  17. W. J. Gu and G. X. Li, Quantum interference effects on ground-state optomechanical cooling, Phys. Rev. A 87, 025804 (2013).
  18. H. K. Lau and A. A. Clerk, Ground-state cooling and high-fidelity quantum transduction via parametrically driven bad-cavity optomechanics, Phys. Rev. Lett. 124, 103602 (2020).
  19. M. Asjad, S. Zippilli, and D. Vitali, Suppression of stokes scattering and improved optomechanical cooling with squeezed light, Phys. Rev. A 94, 051801 (2016).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com