An "Opinion Reproduction Number" for Infodemics in a Bounded-Confidence Content-Spreading Process on Networks (2403.01066v2)
Abstract: We study the spreading dynamics of content on networks. To do this, we use a model in which content spreads through a bounded-confidence mechanism. In a bounded-confidence model (BCM) of opinion dynamics, the agents of a network have continuous-valued opinions, which they adjust when they interact with agents whose opinions are sufficiently close to theirs. The employed content-spreading model introduces a twist into BCMs by using bounded confidence for the content spread itself. We define an analogue of the basic reproduction number from disease dynamics that we call an \emph{opinion reproduction number}. A critical value of the opinion reproduction number indicates whether or not there is an ``infodemic'' (i.e., a large content-spreading cascade) of content that reflects a particular opinion. By determining this critical value, one can determine whether or not an opinion dies off or propagates widely as a cascade in a population of agents. Using configuration-model networks, we quantify the size and shape of content dissemination by calculating a variety of summary statistics, and we illustrate how network structure and spreading-model parameters affect these statistics. We find that content spreads most widely when the agents have a large expected mean degree or a large receptiveness to content. When the spreading process slightly exceeds the infodemic threshold, there can be longer dissemination trees than when the expected mean degree or receptiveness are larger, even though the total number of content shares is smaller.
- S. Goel, A. Anderson, J. Hofman, and D. J. Watts, “The structural virality of online diffusion,” Management Science 62, 180–196 (2016).
- J. L. Juul and J. Ugander, “Comparing information diffusion mechanisms by matching on cascade size,” Proceedings of the National Academy of Sciences of the United States of America 118, e2100786118 (2021).
- G. Eysenbach, “Infodemiology: The epidemiology of (mis)information,” The American Journal of Medicine 13, 763–765 (2002).
- S. C. Briand, M. Cinelli, T. Nguyen, R. Lewis, D. Prybylski, C. M. Valensise, V. Colizza, A. E. Tozzi, N. Perra, A. Baronchelli, M. Tizzoni, F. Zollo, A. Scala, T. Purnat, C. Czerniak, A. J. Kucharski, A. Tshangela, L. Zhou, and W. Quattrociocchi, “Infodemics: A new challenge for public health,” Cell 184, 6010–6014 (2021).
- C. Zielinski, “Infodemics and infodemiology: A short history, a long future,” Pan American Journal of Public Health 45, e40 (2021).
- J. P. Gleeson, T. Onaga, P. Fennell, J. Cotter, R. Burke, and D. J. P. O’Sullivan, “Branching process descriptions of information cascades on Twitter,” Journal of Complex Networks 8, cnab002 (2021).
- J. B. Bak-Coleman, M. Alfano, W. Barfuss, C. T. Bergstrom, M. A. Centeno, I. D. Couzin, J. F. Donges, M. Galesic, A. S. Gersick, J. Jacquet, A. B. Kao, R. E. Moran, P. Romanczuk, D. I. Rubenstein, K. J. Tombak, J. J. Van Bavel, and E. U. Weber, “Stewardship of global collective behavior,” Proc. Nat. Acad. Sci. USA 118, e2025764118 (2021).
- A. Guille, H. Hacid, C. Favre, and D. A. Zighed, “Information diffusion in online social networks: A survey,” ACM Sigmod Record 42, 17–28 (2013).
- A. S. Kümpel, V. Karnowski, and T. Keyling, “News sharing in social media: A review of current research on news sharing users, content, and networks,” Social Media + Society 1, 2056305115610141 (2015).
- S. Muhammed T and S. K. Mathew, “The disaster of misinformation: A review of research in social media,” International Journal of Data Science and Analytics 13, 271–285 (2022).
- K. Starbird, “Disinformation’s spread: Bots, trolls and all of us,” Nature 571, 449–450 (2019).
- G. Pennycook, Z. Epstein, M. Mosleh, A. A. Arechar, D. Eckles, and D. G. Rand, “Shifting attention to accuracy can reduce misinformation online,” Nature 592, 590–595 (2021).
- E. C. Baek, R. Hyon, K. López, M. A. Porter, and C. Parkinson, “Perceived community alignment increases information sharing,” arXiv preprint arXiv:2304.13796 (2023).
- S. Aral, L. Muchnik, and A. Sundararajan, “Distinguishing influence-based contagion from homophily-driven diffusion in dynamic networks,” Proceedings of the National Academy of Sciences of the United States of America 106, 21544–21549 (2009).
- N. A. Christakis and J. H. Fowler, “Social contagion theory: Examining dynamic social networks and human behavior,” Statistics In Medicine 32, 556–577 (2013).
- J. Borge-Holthoefer, R. A. Baños, S. González-Bailón, and Y. Moreno, “Cascading behaviour in complex socio-technical networks,” Journal of Complex Networks 1, 3–24 (2013).
- Y. Yu, S. Huang, Y. Liu, and Y. Tan, “Emotions in online content diffusion,” arXiv preprint arXiv:2011.09003 (2020).
- N. Pröllochs, D. Bär, and S. Feuerriegel, “Emotions in online rumor diffusion,” European Physical Journal — Data Science 10, 51 (2021).
- World Health Organization, “Infodemic,” Available at https://www.who.int/health-topics/infodemic#tab=tab_1 (2023), last accessed 16 March 2023.
- N. Calleja et al., “A public health research agenda for managing infodemics: Methods and results of the first WHO infodemiology conference,” JMIR Infodemiology 1, e30979 (2021).
- J. Zarocostas, “How to fight an infodemic,” The Lancet 395, 676 (2020).
- M. Cinelli, W. Quattrociocchi, A. Galeazzi, C. M. Valensise, E. Brugnoli, A. L. Schmidt, P. Z. F. Zollo, and A. Scala, “The COVID-19 social media infodemic,” Scientific Reports 10, 16598 (2020).
- R. Gallotti, F. Valle, N. Castaldo, P. Sacco, and M. D. Domenico, “Assessing the risks of ‘infodemics’ in response to COVID-19 epidemics,” Nature Human Behaviour 4, 1285–1293 (2020).
- K.-C. Yang, F. Pierri, P.-M. Hui, D. Axelrod, C. Torres-Lugo, J. Bryden, and F. Menczer, “The COVID-19 infodemic: Twitter versus Facebook,” Big Data & Society 8, 20539517211013861 (2021).
- D. M. J. Lazer, M. A. Baum, Y. Benkler, A. J. Berinsky, K. M. Greenhill, F. Menczer, M. J. Metzger, B. Nyhan, G. Pennycook, D. Rothschild, M. Schudson, S. A. Sloman, C. R. Sunstein, E. A. Thorson, D. J. Watts, and J. L. Zittrain, “The science of fake news,” Science 369, 1094–1096 (2018).
- D. J. Watts, D. M. Rothschild, and M. Mobius, “Measuring the news and its impact on democracy,” Proceedings of the National Academy of Sciences of the United States of America 118, e1912443118 (2021).
- N. Rabb, L. Cowen, J. P. de Ruiter, and M. Scheutz, “Cognitive cascades: How to model (and potentially counter) the spread of fake news,” PLoS ONE 17, e0261811 (2022).
- H. Noorazar, K. R. Vixie, A. Talebanpour, and Y. Hu, “From classical to modern opinion dynamics,” International Journal of Modern Physics C 31, 2050101 (2020).
- H. Noorazar, “Recent advances in opinion propagation dynamics: A 2020 survey,” The European Physical Journal Plus 135, 521 (2020).
- A. F. Peralta, J. Kertész, and G. Iñiguez, “Opinion dynamics in social networks: From models to data,” arXiv preprint arXiv:2201.01322 (2022).
- J. Lorenz, “Continuous opinion dynamics under bounded confidence: A survey,” International Journal of Modern Physics C 18, 1819–1838 (2007).
- X. F. Meng, R. A. Van Gorder, and M. A. Porter, “Opinion formation and distribution in a bounded-confidence model on various networks,” Physical Review E 97, 022312 (2018).
- C. Bernardo, C. Altafini, A. Proskurnikov, and F. Vasca, “Bounded confidence opinion dynamics: A survey,” Automatica 159, 111302 (2024).
- H. Z. Brooks and M. A. Porter, “A model for the influence of media on the ideology of content in online social networks,” Physical Review Research 2, 023041 (2020).
- A. Hickok, Y. Kureh, H. Z. Brooks, M. Feng, and M. A. Porter, “A bounded-confidence model of opinion dynamics on hypergraphs,” SIAM Journal on Applied Dynamical Systems 21, 1–32 (2022).
- C. Wang, “Opinion dynamics with higher-order bounded confidence,” Entropy 24, 1300 (2022).
- B. D. Goddard, B. Gooding, H. Short, and G. A. Pavliotis, “Noisy bounded confidence models for opinion dynamics: The effect of boundary conditions on phase transitions,” IMA Journal of Applied Mathematics 87, 80–110 (2022).
- H. Schawe and L. Hernández, “Collective effects of the cost of opinion change,” Scientific Reports 10, 13825 (2020).
- G. J. Li and M. A. Porter, “Bounded-confidence model of opinion dynamics with heterogeneous node-activity levels,” Physical Review Research 5, 023179 (2023).
- H. Z. Brooks, P. S. Chodrow, and M. A. Porter, “Emergence of polarization in a sigmoidal bounded-confidence model of opinion dynamics,” SIAM Journal on Applied Dynamical Systems, in press (arXiv:2209.07004) (2023).
- C. Kann and M. Feng, “Repulsive bounded-confidence model of opinion dynamics in polarized communities,” arXiv preprint arXiv:2301.02210 (2023).
- G. Li, S. Motsch, and D. Weber, “Bounded confidence dynamics and graph control: Enforcing consensus,” Networks and Heterogeneous Media 15, 489–517 (2020).
- G. J. Li, J. Luo, and M. A. Porter, “Bounded-confidence models of opinion dynamics with adaptive confidence bounds,” arXiv preprint arXiv:2303.07563 (2023).
- M. Sahimi, Applications of Percolation Theory, 2nd ed. (Springer-Verlag, Heidelberg, Germany, 2023).
- S. Lehmann and Y.-Y. Ahn, eds., Complex Spreading Phenomena in Social Systems: Influence and Contagion in Real-World Social Networks (Springer International Publishing, Cham, Switzerland, 2018).
- R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and A. Vespignani, “Epidemic processes in complex networks,” Reviews of Modern Physics 87, 925–979 (2015).
- J. Bedson, L. A. Skrip, D. Pedi, S. Abramowitz, S. Carter, M. F. Jalloh, S. Funk, N. Gobat, T. Giles-Vernick, G. Chowell, J. R. de Almeida, R. Elessawi, S. V. Scarpino, R. A. Hammond, S. Briand, J. M. Epstein, L. Hébert-Dufresne, and B. M. Althouse, “A review and agenda for integrated disease models including social and behavioural factors,” Nature Human Behaviour 5, 834–846 (2021).
- L. Weng, F. Menczer, and Y.-Y. Ahn, “Virality prediction and community structure in social networks,” Scientific Reports 3, 2522 (2013).
- K. Lerman, “Information is not a virus, and other consequences of human cognitive limits,” Future Internet 8, 21 (2016).
- P.-M. Hui, L. Weng, A. Sahami Shirazi, Y.-Y. Ahn, and F. Menczer, “Scalable detection of viral memes from diffusion patterns,” in Complex Spreading Phenomena in Social Systems: Influence and Contagion in Real-World Social Networks, edited by S. Lehmann and Y.-Y. Ahn (Springer International Publishing, Cham, Switzerland, 2018) pp. 197–211.
- H. Olsson and M. Galesic, “Analogies for modeling belief dynamics,” (2023), preprint, available at https://osf.io/bpj97.
- G. St-Onge, L. Hébert-Dufresne, and A. Allard, “Nonlinear bias toward complex contagion in uncertain transmission settings,” Proceedings of the National Academy of Sciences of the United States of America 121, e2312202121 (2024).
- P.-A. Noël, A. Allard, L. Hébert-Dufresne, V. Marceau, and L. J. Dubé, “Propagation on networks: An exact alternative perspective,” Physical Review E 85, 031118 (2012).
- M. Gomez Rodriguez, J. Leskovec, and A. Krause, “Inferring networks of diffusion and influence,” in Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’10 (Association for Computing Machinery, New York, NY, USA, 2010) pp. 1019–1028.
- I. V. Kozitsin, “Opinion formation in online public debates structured in information cascades: A system-theoretic viewpoint,” Computers 12, 178 (2023).
- C. Xu, P. M. Hui, O. K. Jha, C. Xia, and N. F. Johnson, “Preventing the spread of online harms: Physics of contagion across multi-platform social media and metaverses,” arXiv preprint arXiv:2201.04249 (2022).
- S. Blumberg and J. O. Lloyd-Smith, “Inference of r0subscript𝑟0r_{0}italic_r start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and transmission heterogeneity from the size distribution of stuttering chain,” PLoS Computational Biology 9, e1002993 (2013).
- A. V. Proskurnikov and R. Tempo, “A tutorial on modeling and analysis of dynamic social networks. Part II,” Annual Reviews in Control 45, 166–190 (2018).
- S. Wasserman and K. Faust, Social Network Analysis: Methods and Applications (Cambridge University Press, Cambridge, UK, 1994).
- M. Newman, Networks, 2nd ed. (Oxford University Press, 2018).
- F. Bullo, Lectures on Network Systems, Vol. 1.6 (Kindle Direct Publishing Santa Barbara, CA, 2022) available at http://motion.me.ucsb.edu/book-lns/.
- H. Z. Brooks, “A tutorial on networks in social systems: A mathematical modeling perspective,” arXiv preprint arXiv:2302.00801 (2023).
- K. Lerman and R. Ghosh, “Information contagion: An empirical study of the spread of news on Digg and Twitter social networks,” in Proceedings of the Fourth International AAAI Conference on Weblogs and Social Media, ICWSM-10 (Association for the Advancement of Artificial Intelligence, Washington, DC, USA, 2010).
- J. P. Gleeson, J. A. Ward, K. P. O’Sullivan, and W. T. Lee, “Competition-induced criticality in a model of meme popularity,” Physical Review Letters 112, 048701 (2014).
- S. Vosoughi, D. Roy, and S. Aral, “The spread of true and false news online,” Science 359, 1146–1151 (2018).
- L. A. Adamic, T. M. Lento, E. Adar, and P. C. Ng, “Information evolution in social networks,” in Proceedings of the Ninth ACM International Conference on Web Search and Data Mining, WSDM ’16 (Association for Computing Machinery, New York, NY, USA, 2016) pp. 473–482.
- S.-W. Oh and M. A. Porter, “Complex contagions with timers,” Chaos: An Interdisciplinary Journal of Nonlinear Science 28, 033101 (2018).
- B. Min and M. San Miguel, “Competing contagion processes: Complex contagion triggered by simple contagion,” Scientific Reports 8, 10422 (2018).
- B. K. Fosdick, D. B. Larremore, J. Nishimura, and J. Ugander, “Configuring random graph models with fixed degree sequences,” SIAM Review 60, 315–355 (2018).
- S. Peng, Y. Zhou, L. Cao, S. Yu, J. Niu, and W. Jia, “Influence analysis in social networks: A survey,” Journal of Network and Computer Applications 106, 17–32 (2018).
- G. Deffuant, D. Neau, F. Amblard, and G. Weisbuch, “Mixing beliefs among interacting agents,” Advances in Complex Systems 3, 87–98 (2000).
- S. Melnik, M. A. Porter, P. J. Mucha, and J. P. Gleeson, “Dynamics on modular networks with heterogeneous correlations,” Chaos: An Interdisciplinary Journal of Nonlinear Science 24, 023106 (2014).
- M. Kivelä, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno, and M. A. Porter, “Multilayer networks,” Journal of Complex Networks 2, 203–271 (2014).
- F. Battiston, G. Cencetti, I. Iacopini, V. Latora, M. Lucas, A. Patania, J.-G. Young, and G. Petri, “Networks beyond pairwise interactions: Structure and dynamics,” Physics Reports 874, 1–92 (2020).
- R. Berner, T. Gross, C. Kuehn, J. Kurths, and S. Yanchuk, “Adaptive dynamical networks,” Physics Reports 1031, 1–59 (2023).
- M. A. Porter, “Quantum Chaos in Vibrating Billiard Systems,” (2002), ph.D. thesis, Cornell University.
- M. A. Porter, R. Carretero-González, P. G. Kevrekidis, and B. A. Maolmed, “Nonlinear lattice dynamics of Bose–Einstein condensates,” Chaos: An Interdisciplinary Journal of Nonlinear Science 15, 015115 (2005).
- M. A. Porter, N. J. Zabusky, and D. K. Campbell, “Fermi, Pasta, Ulam and the birth of experimental mathematics,” American Scientist 97, 214–221 (2009).
- Heather Z. Brooks (7 papers)
- Mason A. Porter (210 papers)