Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cyclic Quantum Annealing: Searching for Deep Low-Energy States in 5000-Qubit Spin Glass (2403.01034v2)

Published 1 Mar 2024 in cond-mat.dis-nn, cond-mat.stat-mech, and quant-ph

Abstract: Quantum computers promise a qualitative speedup in solving a broad spectrum of practical optimization problems. The latter can be mapped onto the task of finding low-energy states of spin glasses, which is known to be exceedingly difficult. Using D-Wave's 5000-qubit quantum processor, we demonstrate that a recently proposed iterative cyclic quantum annealing algorithm can find deep low-energy states in record time. We also find intricate structures in a low-energy landscape of spin glasses, such as a power-law distribution of connected clusters with a small surface energy. These observations offer guidance for further improvement of the optimization algorithms.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. Nature Communications 13(1), 5503 (2022). 10.1038/s41467-022-33179-y [2] R.P. Feynman, Simulating physics with computers. International Journal of Theoretical Physics 21(6), 467–488 (1982). 10.1007/BF02650179 [3] J. Brooke, D. Bitko, T.F. Rosenbaum, G. Aeppli, Quantum Annealing of a Disordered Magnet. Science 284, 779 (1999). 10.1126/science.284.5415.779 [4] M.W. Johnson, M.H.S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris, A.J. Berkley, J. Johansson, P. Bunyk, E.M. Chapple, C. Enderud, J.P. Hilton, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Oh, I. Perminov, C. Rich, M.C. Thom, E. Tolkacheva, C.J.S. Truncik, S. Uchaikin, J. Wang, B. Wilson, G. Rose, Quantum annealing with manufactured spins. Nature 473(7346), 194–198 (2011). 10.1038/nature10012 [5] N.G. Dickson, M.W. Johnson, M.H. Amin, R. Harris, F. Altomare, A.J. Berkley, P. Bunyk, J. Cai, E.M. Chapple, P. Chavez, F. Cioata, T. Cirip, P. Debuen, M. Drew-Brook, C. Enderud, S. Gildert, F. Hamze, J.P. Hilton, E. Hoskinson, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Lanting, T. Mahon, R. Neufeld, T. Oh, I. Perminov, C. Petroff, A. Przybysz, C. Rich, P. Spear, A. Tcaciuc, M.C. Thom, E. Tolkacheva, S. Uchaikin, J. Wang, A.B. Wilson, Z. Merali, G. Rose, Thermally assisted quantum annealing of a 16-qubit problem. Nature Communications 4, 1903 (2013). 10.1038/ncomms2920 [6] A.D. King, J. Carrasquilla, J. Raymond, I. Ozfidan, E. Andriyash, A. Berkley, M. Reis, T. Lanting, R. Harris, F. Altomare, K. Boothby, P.I. Bunyk, C. Enderud, A. Fréchette, E. Hoskinson, N. Ladizinsky, T. Oh, G. Poulin-Lamarre, C. Rich, Y. Sato, A.Y. Smirnov, L.J. Swenson, M.H. Volkmann, J. Whittaker, J. Yao, E. Ladizinsky, M.W. Johnson, J. Hilton, M.H. Amin, Observation of topological phenomena in a programmable lattice of 1,800 qubits. Nature 560(7719), 456–460 (2018). 10.1038/s41586-018-0410-x [7] A.D. King, S. Suzuki, J. Raymond, A. Zucca, T. Lanting, F. Altomare, A.J. Berkley, S. Ejtemaee, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, J.D. Whittaker, J. Yao, R. Harris, D.A. Lidar, H. Nishimori, M.H. Amin, Coherent quantum annealing in a programmable 2,000 qubit Ising chain. Nature Physics 18(11), 1324–1328 (2022). 10.1038/s41567-022-01741-6 [8] N. Mohseni, P.L. McMahon, T. Byrnes, Ising machines as hardware solvers of combinatorial optimization problems. Nature Reviews Physics 4, 363–379 (2022). 10.1038/s42254-022-00440-8 [9] A.D. King, J. Raymond, T. Lanting, R. Harris, A. Zucca, F. Altomare, A.J. Berkley, K. Boothby, S. Ejtemaee, C. Enderud, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, R. Molavi, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, N. Tsai, M. Volkmann, J.D. Whittaker, J. Yao, A.W. Sandvik, M.H. Amin, Quantum critical dynamics in a 5000-qubit programmable spin glass. Nature (2023). 10.1038/s41586-023-05867-2. arxiv:2207.13800 [cond-mat, physics:quant-ph] [10] A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 R.P. Feynman, Simulating physics with computers. International Journal of Theoretical Physics 21(6), 467–488 (1982). 10.1007/BF02650179 [3] J. Brooke, D. Bitko, T.F. Rosenbaum, G. Aeppli, Quantum Annealing of a Disordered Magnet. Science 284, 779 (1999). 10.1126/science.284.5415.779 [4] M.W. Johnson, M.H.S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris, A.J. Berkley, J. Johansson, P. Bunyk, E.M. Chapple, C. Enderud, J.P. Hilton, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Oh, I. Perminov, C. Rich, M.C. Thom, E. Tolkacheva, C.J.S. Truncik, S. Uchaikin, J. Wang, B. Wilson, G. Rose, Quantum annealing with manufactured spins. Nature 473(7346), 194–198 (2011). 10.1038/nature10012 [5] N.G. Dickson, M.W. Johnson, M.H. Amin, R. Harris, F. Altomare, A.J. Berkley, P. Bunyk, J. Cai, E.M. Chapple, P. Chavez, F. Cioata, T. Cirip, P. Debuen, M. Drew-Brook, C. Enderud, S. Gildert, F. Hamze, J.P. Hilton, E. Hoskinson, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Lanting, T. Mahon, R. Neufeld, T. Oh, I. Perminov, C. Petroff, A. Przybysz, C. Rich, P. Spear, A. Tcaciuc, M.C. Thom, E. Tolkacheva, S. Uchaikin, J. Wang, A.B. Wilson, Z. Merali, G. Rose, Thermally assisted quantum annealing of a 16-qubit problem. Nature Communications 4, 1903 (2013). 10.1038/ncomms2920 [6] A.D. King, J. Carrasquilla, J. Raymond, I. Ozfidan, E. Andriyash, A. Berkley, M. Reis, T. Lanting, R. Harris, F. Altomare, K. Boothby, P.I. Bunyk, C. Enderud, A. Fréchette, E. Hoskinson, N. Ladizinsky, T. Oh, G. Poulin-Lamarre, C. Rich, Y. Sato, A.Y. Smirnov, L.J. Swenson, M.H. Volkmann, J. Whittaker, J. Yao, E. Ladizinsky, M.W. Johnson, J. Hilton, M.H. Amin, Observation of topological phenomena in a programmable lattice of 1,800 qubits. Nature 560(7719), 456–460 (2018). 10.1038/s41586-018-0410-x [7] A.D. King, S. Suzuki, J. Raymond, A. Zucca, T. Lanting, F. Altomare, A.J. Berkley, S. Ejtemaee, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, J.D. Whittaker, J. Yao, R. Harris, D.A. Lidar, H. Nishimori, M.H. Amin, Coherent quantum annealing in a programmable 2,000 qubit Ising chain. Nature Physics 18(11), 1324–1328 (2022). 10.1038/s41567-022-01741-6 [8] N. Mohseni, P.L. McMahon, T. Byrnes, Ising machines as hardware solvers of combinatorial optimization problems. Nature Reviews Physics 4, 363–379 (2022). 10.1038/s42254-022-00440-8 [9] A.D. King, J. Raymond, T. Lanting, R. Harris, A. Zucca, F. Altomare, A.J. Berkley, K. Boothby, S. Ejtemaee, C. Enderud, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, R. Molavi, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, N. Tsai, M. Volkmann, J.D. Whittaker, J. Yao, A.W. Sandvik, M.H. Amin, Quantum critical dynamics in a 5000-qubit programmable spin glass. Nature (2023). 10.1038/s41586-023-05867-2. arxiv:2207.13800 [cond-mat, physics:quant-ph] [10] A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 J. Brooke, D. Bitko, T.F. Rosenbaum, G. Aeppli, Quantum Annealing of a Disordered Magnet. Science 284, 779 (1999). 10.1126/science.284.5415.779 [4] M.W. Johnson, M.H.S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris, A.J. Berkley, J. Johansson, P. Bunyk, E.M. Chapple, C. Enderud, J.P. Hilton, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Oh, I. Perminov, C. Rich, M.C. Thom, E. Tolkacheva, C.J.S. Truncik, S. Uchaikin, J. Wang, B. Wilson, G. Rose, Quantum annealing with manufactured spins. Nature 473(7346), 194–198 (2011). 10.1038/nature10012 [5] N.G. Dickson, M.W. Johnson, M.H. Amin, R. Harris, F. Altomare, A.J. Berkley, P. Bunyk, J. Cai, E.M. Chapple, P. Chavez, F. Cioata, T. Cirip, P. Debuen, M. Drew-Brook, C. Enderud, S. Gildert, F. Hamze, J.P. Hilton, E. Hoskinson, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Lanting, T. Mahon, R. Neufeld, T. Oh, I. Perminov, C. Petroff, A. Przybysz, C. Rich, P. Spear, A. Tcaciuc, M.C. Thom, E. Tolkacheva, S. Uchaikin, J. Wang, A.B. Wilson, Z. Merali, G. Rose, Thermally assisted quantum annealing of a 16-qubit problem. Nature Communications 4, 1903 (2013). 10.1038/ncomms2920 [6] A.D. King, J. Carrasquilla, J. Raymond, I. Ozfidan, E. Andriyash, A. Berkley, M. Reis, T. Lanting, R. Harris, F. Altomare, K. Boothby, P.I. Bunyk, C. Enderud, A. Fréchette, E. Hoskinson, N. Ladizinsky, T. Oh, G. Poulin-Lamarre, C. Rich, Y. Sato, A.Y. Smirnov, L.J. Swenson, M.H. Volkmann, J. Whittaker, J. Yao, E. Ladizinsky, M.W. Johnson, J. Hilton, M.H. Amin, Observation of topological phenomena in a programmable lattice of 1,800 qubits. Nature 560(7719), 456–460 (2018). 10.1038/s41586-018-0410-x [7] A.D. King, S. Suzuki, J. Raymond, A. Zucca, T. Lanting, F. Altomare, A.J. Berkley, S. Ejtemaee, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, J.D. Whittaker, J. Yao, R. Harris, D.A. Lidar, H. Nishimori, M.H. Amin, Coherent quantum annealing in a programmable 2,000 qubit Ising chain. Nature Physics 18(11), 1324–1328 (2022). 10.1038/s41567-022-01741-6 [8] N. Mohseni, P.L. McMahon, T. Byrnes, Ising machines as hardware solvers of combinatorial optimization problems. Nature Reviews Physics 4, 363–379 (2022). 10.1038/s42254-022-00440-8 [9] A.D. King, J. Raymond, T. Lanting, R. Harris, A. Zucca, F. Altomare, A.J. Berkley, K. Boothby, S. Ejtemaee, C. Enderud, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, R. Molavi, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, N. Tsai, M. Volkmann, J.D. Whittaker, J. Yao, A.W. Sandvik, M.H. Amin, Quantum critical dynamics in a 5000-qubit programmable spin glass. Nature (2023). 10.1038/s41586-023-05867-2. arxiv:2207.13800 [cond-mat, physics:quant-ph] [10] A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M.W. Johnson, M.H.S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris, A.J. Berkley, J. Johansson, P. Bunyk, E.M. Chapple, C. Enderud, J.P. Hilton, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Oh, I. Perminov, C. Rich, M.C. Thom, E. Tolkacheva, C.J.S. Truncik, S. Uchaikin, J. Wang, B. Wilson, G. Rose, Quantum annealing with manufactured spins. Nature 473(7346), 194–198 (2011). 10.1038/nature10012 [5] N.G. Dickson, M.W. Johnson, M.H. Amin, R. Harris, F. Altomare, A.J. Berkley, P. Bunyk, J. Cai, E.M. Chapple, P. Chavez, F. Cioata, T. Cirip, P. Debuen, M. Drew-Brook, C. Enderud, S. Gildert, F. Hamze, J.P. Hilton, E. Hoskinson, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Lanting, T. Mahon, R. Neufeld, T. Oh, I. Perminov, C. Petroff, A. Przybysz, C. Rich, P. Spear, A. Tcaciuc, M.C. Thom, E. Tolkacheva, S. Uchaikin, J. Wang, A.B. Wilson, Z. Merali, G. Rose, Thermally assisted quantum annealing of a 16-qubit problem. Nature Communications 4, 1903 (2013). 10.1038/ncomms2920 [6] A.D. King, J. Carrasquilla, J. Raymond, I. Ozfidan, E. Andriyash, A. Berkley, M. Reis, T. Lanting, R. Harris, F. Altomare, K. Boothby, P.I. Bunyk, C. Enderud, A. Fréchette, E. Hoskinson, N. Ladizinsky, T. Oh, G. Poulin-Lamarre, C. Rich, Y. Sato, A.Y. Smirnov, L.J. Swenson, M.H. Volkmann, J. Whittaker, J. Yao, E. Ladizinsky, M.W. Johnson, J. Hilton, M.H. Amin, Observation of topological phenomena in a programmable lattice of 1,800 qubits. Nature 560(7719), 456–460 (2018). 10.1038/s41586-018-0410-x [7] A.D. King, S. Suzuki, J. Raymond, A. Zucca, T. Lanting, F. Altomare, A.J. Berkley, S. Ejtemaee, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, J.D. Whittaker, J. Yao, R. Harris, D.A. Lidar, H. Nishimori, M.H. Amin, Coherent quantum annealing in a programmable 2,000 qubit Ising chain. Nature Physics 18(11), 1324–1328 (2022). 10.1038/s41567-022-01741-6 [8] N. Mohseni, P.L. McMahon, T. Byrnes, Ising machines as hardware solvers of combinatorial optimization problems. Nature Reviews Physics 4, 363–379 (2022). 10.1038/s42254-022-00440-8 [9] A.D. King, J. Raymond, T. Lanting, R. Harris, A. Zucca, F. Altomare, A.J. Berkley, K. Boothby, S. Ejtemaee, C. Enderud, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, R. Molavi, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, N. Tsai, M. Volkmann, J.D. Whittaker, J. Yao, A.W. Sandvik, M.H. Amin, Quantum critical dynamics in a 5000-qubit programmable spin glass. Nature (2023). 10.1038/s41586-023-05867-2. arxiv:2207.13800 [cond-mat, physics:quant-ph] [10] A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.G. Dickson, M.W. Johnson, M.H. Amin, R. Harris, F. Altomare, A.J. Berkley, P. Bunyk, J. Cai, E.M. Chapple, P. Chavez, F. Cioata, T. Cirip, P. Debuen, M. Drew-Brook, C. Enderud, S. Gildert, F. Hamze, J.P. Hilton, E. Hoskinson, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Lanting, T. Mahon, R. Neufeld, T. Oh, I. Perminov, C. Petroff, A. Przybysz, C. Rich, P. Spear, A. Tcaciuc, M.C. Thom, E. Tolkacheva, S. Uchaikin, J. Wang, A.B. Wilson, Z. Merali, G. Rose, Thermally assisted quantum annealing of a 16-qubit problem. Nature Communications 4, 1903 (2013). 10.1038/ncomms2920 [6] A.D. King, J. Carrasquilla, J. Raymond, I. Ozfidan, E. Andriyash, A. Berkley, M. Reis, T. Lanting, R. Harris, F. Altomare, K. Boothby, P.I. Bunyk, C. Enderud, A. Fréchette, E. Hoskinson, N. Ladizinsky, T. Oh, G. Poulin-Lamarre, C. Rich, Y. Sato, A.Y. Smirnov, L.J. Swenson, M.H. Volkmann, J. Whittaker, J. Yao, E. Ladizinsky, M.W. Johnson, J. Hilton, M.H. Amin, Observation of topological phenomena in a programmable lattice of 1,800 qubits. Nature 560(7719), 456–460 (2018). 10.1038/s41586-018-0410-x [7] A.D. King, S. Suzuki, J. Raymond, A. Zucca, T. Lanting, F. Altomare, A.J. Berkley, S. Ejtemaee, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, J.D. Whittaker, J. Yao, R. Harris, D.A. Lidar, H. Nishimori, M.H. Amin, Coherent quantum annealing in a programmable 2,000 qubit Ising chain. Nature Physics 18(11), 1324–1328 (2022). 10.1038/s41567-022-01741-6 [8] N. Mohseni, P.L. McMahon, T. Byrnes, Ising machines as hardware solvers of combinatorial optimization problems. Nature Reviews Physics 4, 363–379 (2022). 10.1038/s42254-022-00440-8 [9] A.D. King, J. Raymond, T. Lanting, R. Harris, A. Zucca, F. Altomare, A.J. Berkley, K. Boothby, S. Ejtemaee, C. Enderud, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, R. Molavi, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, N. Tsai, M. Volkmann, J.D. Whittaker, J. Yao, A.W. Sandvik, M.H. Amin, Quantum critical dynamics in a 5000-qubit programmable spin glass. Nature (2023). 10.1038/s41586-023-05867-2. arxiv:2207.13800 [cond-mat, physics:quant-ph] [10] A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.D. King, J. Carrasquilla, J. Raymond, I. Ozfidan, E. Andriyash, A. Berkley, M. Reis, T. Lanting, R. Harris, F. Altomare, K. Boothby, P.I. Bunyk, C. Enderud, A. Fréchette, E. Hoskinson, N. Ladizinsky, T. Oh, G. Poulin-Lamarre, C. Rich, Y. Sato, A.Y. Smirnov, L.J. Swenson, M.H. Volkmann, J. Whittaker, J. Yao, E. Ladizinsky, M.W. Johnson, J. Hilton, M.H. Amin, Observation of topological phenomena in a programmable lattice of 1,800 qubits. Nature 560(7719), 456–460 (2018). 10.1038/s41586-018-0410-x [7] A.D. King, S. Suzuki, J. Raymond, A. Zucca, T. Lanting, F. Altomare, A.J. Berkley, S. Ejtemaee, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, J.D. Whittaker, J. Yao, R. Harris, D.A. Lidar, H. Nishimori, M.H. Amin, Coherent quantum annealing in a programmable 2,000 qubit Ising chain. Nature Physics 18(11), 1324–1328 (2022). 10.1038/s41567-022-01741-6 [8] N. Mohseni, P.L. McMahon, T. Byrnes, Ising machines as hardware solvers of combinatorial optimization problems. Nature Reviews Physics 4, 363–379 (2022). 10.1038/s42254-022-00440-8 [9] A.D. King, J. Raymond, T. Lanting, R. Harris, A. Zucca, F. Altomare, A.J. Berkley, K. Boothby, S. Ejtemaee, C. Enderud, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, R. Molavi, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, N. Tsai, M. Volkmann, J.D. Whittaker, J. Yao, A.W. Sandvik, M.H. Amin, Quantum critical dynamics in a 5000-qubit programmable spin glass. Nature (2023). 10.1038/s41586-023-05867-2. arxiv:2207.13800 [cond-mat, physics:quant-ph] [10] A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.D. King, S. Suzuki, J. Raymond, A. Zucca, T. Lanting, F. Altomare, A.J. Berkley, S. Ejtemaee, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, J.D. Whittaker, J. Yao, R. Harris, D.A. Lidar, H. Nishimori, M.H. Amin, Coherent quantum annealing in a programmable 2,000 qubit Ising chain. Nature Physics 18(11), 1324–1328 (2022). 10.1038/s41567-022-01741-6 [8] N. Mohseni, P.L. McMahon, T. Byrnes, Ising machines as hardware solvers of combinatorial optimization problems. Nature Reviews Physics 4, 363–379 (2022). 10.1038/s42254-022-00440-8 [9] A.D. King, J. Raymond, T. Lanting, R. Harris, A. Zucca, F. Altomare, A.J. Berkley, K. Boothby, S. Ejtemaee, C. Enderud, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, R. Molavi, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, N. Tsai, M. Volkmann, J.D. Whittaker, J. Yao, A.W. Sandvik, M.H. Amin, Quantum critical dynamics in a 5000-qubit programmable spin glass. Nature (2023). 10.1038/s41586-023-05867-2. arxiv:2207.13800 [cond-mat, physics:quant-ph] [10] A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N. Mohseni, P.L. McMahon, T. Byrnes, Ising machines as hardware solvers of combinatorial optimization problems. Nature Reviews Physics 4, 363–379 (2022). 10.1038/s42254-022-00440-8 [9] A.D. King, J. Raymond, T. Lanting, R. Harris, A. Zucca, F. Altomare, A.J. Berkley, K. Boothby, S. Ejtemaee, C. Enderud, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, R. Molavi, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, N. Tsai, M. Volkmann, J.D. Whittaker, J. Yao, A.W. Sandvik, M.H. Amin, Quantum critical dynamics in a 5000-qubit programmable spin glass. Nature (2023). 10.1038/s41586-023-05867-2. arxiv:2207.13800 [cond-mat, physics:quant-ph] [10] A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.D. King, J. Raymond, T. Lanting, R. Harris, A. Zucca, F. Altomare, A.J. Berkley, K. Boothby, S. Ejtemaee, C. Enderud, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, R. Molavi, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, N. Tsai, M. Volkmann, J.D. Whittaker, J. Yao, A.W. Sandvik, M.H. Amin, Quantum critical dynamics in a 5000-qubit programmable spin glass. Nature (2023). 10.1038/s41586-023-05867-2. arxiv:2207.13800 [cond-mat, physics:quant-ph] [10] A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202
  2. R.P. Feynman, Simulating physics with computers. International Journal of Theoretical Physics 21(6), 467–488 (1982). 10.1007/BF02650179 [3] J. Brooke, D. Bitko, T.F. Rosenbaum, G. Aeppli, Quantum Annealing of a Disordered Magnet. Science 284, 779 (1999). 10.1126/science.284.5415.779 [4] M.W. Johnson, M.H.S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris, A.J. Berkley, J. Johansson, P. Bunyk, E.M. Chapple, C. Enderud, J.P. Hilton, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Oh, I. Perminov, C. Rich, M.C. Thom, E. Tolkacheva, C.J.S. Truncik, S. Uchaikin, J. Wang, B. Wilson, G. Rose, Quantum annealing with manufactured spins. Nature 473(7346), 194–198 (2011). 10.1038/nature10012 [5] N.G. Dickson, M.W. Johnson, M.H. Amin, R. Harris, F. Altomare, A.J. Berkley, P. Bunyk, J. Cai, E.M. Chapple, P. Chavez, F. Cioata, T. Cirip, P. Debuen, M. Drew-Brook, C. Enderud, S. Gildert, F. Hamze, J.P. Hilton, E. Hoskinson, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Lanting, T. Mahon, R. Neufeld, T. Oh, I. Perminov, C. Petroff, A. Przybysz, C. Rich, P. Spear, A. Tcaciuc, M.C. Thom, E. Tolkacheva, S. Uchaikin, J. Wang, A.B. Wilson, Z. Merali, G. Rose, Thermally assisted quantum annealing of a 16-qubit problem. Nature Communications 4, 1903 (2013). 10.1038/ncomms2920 [6] A.D. King, J. Carrasquilla, J. Raymond, I. Ozfidan, E. Andriyash, A. Berkley, M. Reis, T. Lanting, R. Harris, F. Altomare, K. Boothby, P.I. Bunyk, C. Enderud, A. Fréchette, E. Hoskinson, N. Ladizinsky, T. Oh, G. Poulin-Lamarre, C. Rich, Y. Sato, A.Y. Smirnov, L.J. Swenson, M.H. Volkmann, J. Whittaker, J. Yao, E. Ladizinsky, M.W. Johnson, J. Hilton, M.H. Amin, Observation of topological phenomena in a programmable lattice of 1,800 qubits. Nature 560(7719), 456–460 (2018). 10.1038/s41586-018-0410-x [7] A.D. King, S. Suzuki, J. Raymond, A. Zucca, T. Lanting, F. Altomare, A.J. Berkley, S. Ejtemaee, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, J.D. Whittaker, J. Yao, R. Harris, D.A. Lidar, H. Nishimori, M.H. Amin, Coherent quantum annealing in a programmable 2,000 qubit Ising chain. Nature Physics 18(11), 1324–1328 (2022). 10.1038/s41567-022-01741-6 [8] N. Mohseni, P.L. McMahon, T. Byrnes, Ising machines as hardware solvers of combinatorial optimization problems. Nature Reviews Physics 4, 363–379 (2022). 10.1038/s42254-022-00440-8 [9] A.D. King, J. Raymond, T. Lanting, R. Harris, A. Zucca, F. Altomare, A.J. Berkley, K. Boothby, S. Ejtemaee, C. Enderud, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, R. Molavi, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, N. Tsai, M. Volkmann, J.D. Whittaker, J. Yao, A.W. Sandvik, M.H. Amin, Quantum critical dynamics in a 5000-qubit programmable spin glass. Nature (2023). 10.1038/s41586-023-05867-2. arxiv:2207.13800 [cond-mat, physics:quant-ph] [10] A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 J. Brooke, D. Bitko, T.F. Rosenbaum, G. Aeppli, Quantum Annealing of a Disordered Magnet. Science 284, 779 (1999). 10.1126/science.284.5415.779 [4] M.W. Johnson, M.H.S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris, A.J. Berkley, J. Johansson, P. Bunyk, E.M. Chapple, C. Enderud, J.P. Hilton, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Oh, I. Perminov, C. Rich, M.C. Thom, E. Tolkacheva, C.J.S. Truncik, S. Uchaikin, J. Wang, B. Wilson, G. Rose, Quantum annealing with manufactured spins. Nature 473(7346), 194–198 (2011). 10.1038/nature10012 [5] N.G. Dickson, M.W. Johnson, M.H. Amin, R. Harris, F. Altomare, A.J. Berkley, P. Bunyk, J. Cai, E.M. Chapple, P. Chavez, F. Cioata, T. Cirip, P. Debuen, M. Drew-Brook, C. Enderud, S. Gildert, F. Hamze, J.P. Hilton, E. Hoskinson, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Lanting, T. Mahon, R. Neufeld, T. Oh, I. Perminov, C. Petroff, A. Przybysz, C. Rich, P. Spear, A. Tcaciuc, M.C. Thom, E. Tolkacheva, S. Uchaikin, J. Wang, A.B. Wilson, Z. Merali, G. Rose, Thermally assisted quantum annealing of a 16-qubit problem. Nature Communications 4, 1903 (2013). 10.1038/ncomms2920 [6] A.D. King, J. Carrasquilla, J. Raymond, I. Ozfidan, E. Andriyash, A. Berkley, M. Reis, T. Lanting, R. Harris, F. Altomare, K. Boothby, P.I. Bunyk, C. Enderud, A. Fréchette, E. Hoskinson, N. Ladizinsky, T. Oh, G. Poulin-Lamarre, C. Rich, Y. Sato, A.Y. Smirnov, L.J. Swenson, M.H. Volkmann, J. Whittaker, J. Yao, E. Ladizinsky, M.W. Johnson, J. Hilton, M.H. Amin, Observation of topological phenomena in a programmable lattice of 1,800 qubits. Nature 560(7719), 456–460 (2018). 10.1038/s41586-018-0410-x [7] A.D. King, S. Suzuki, J. Raymond, A. Zucca, T. Lanting, F. Altomare, A.J. Berkley, S. Ejtemaee, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, J.D. Whittaker, J. Yao, R. Harris, D.A. Lidar, H. Nishimori, M.H. Amin, Coherent quantum annealing in a programmable 2,000 qubit Ising chain. Nature Physics 18(11), 1324–1328 (2022). 10.1038/s41567-022-01741-6 [8] N. Mohseni, P.L. McMahon, T. Byrnes, Ising machines as hardware solvers of combinatorial optimization problems. Nature Reviews Physics 4, 363–379 (2022). 10.1038/s42254-022-00440-8 [9] A.D. King, J. Raymond, T. Lanting, R. Harris, A. Zucca, F. Altomare, A.J. Berkley, K. Boothby, S. Ejtemaee, C. Enderud, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, R. Molavi, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, N. Tsai, M. Volkmann, J.D. Whittaker, J. Yao, A.W. Sandvik, M.H. Amin, Quantum critical dynamics in a 5000-qubit programmable spin glass. Nature (2023). 10.1038/s41586-023-05867-2. arxiv:2207.13800 [cond-mat, physics:quant-ph] [10] A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M.W. Johnson, M.H.S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris, A.J. Berkley, J. Johansson, P. Bunyk, E.M. Chapple, C. Enderud, J.P. Hilton, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Oh, I. Perminov, C. Rich, M.C. Thom, E. Tolkacheva, C.J.S. Truncik, S. Uchaikin, J. Wang, B. Wilson, G. Rose, Quantum annealing with manufactured spins. Nature 473(7346), 194–198 (2011). 10.1038/nature10012 [5] N.G. Dickson, M.W. Johnson, M.H. Amin, R. Harris, F. Altomare, A.J. Berkley, P. Bunyk, J. Cai, E.M. Chapple, P. Chavez, F. Cioata, T. Cirip, P. Debuen, M. Drew-Brook, C. Enderud, S. Gildert, F. Hamze, J.P. Hilton, E. Hoskinson, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Lanting, T. Mahon, R. Neufeld, T. Oh, I. Perminov, C. Petroff, A. Przybysz, C. Rich, P. Spear, A. Tcaciuc, M.C. Thom, E. Tolkacheva, S. Uchaikin, J. Wang, A.B. Wilson, Z. Merali, G. Rose, Thermally assisted quantum annealing of a 16-qubit problem. Nature Communications 4, 1903 (2013). 10.1038/ncomms2920 [6] A.D. King, J. Carrasquilla, J. Raymond, I. Ozfidan, E. Andriyash, A. Berkley, M. Reis, T. Lanting, R. Harris, F. Altomare, K. Boothby, P.I. Bunyk, C. Enderud, A. Fréchette, E. Hoskinson, N. Ladizinsky, T. Oh, G. Poulin-Lamarre, C. Rich, Y. Sato, A.Y. Smirnov, L.J. Swenson, M.H. Volkmann, J. Whittaker, J. Yao, E. Ladizinsky, M.W. Johnson, J. Hilton, M.H. Amin, Observation of topological phenomena in a programmable lattice of 1,800 qubits. Nature 560(7719), 456–460 (2018). 10.1038/s41586-018-0410-x [7] A.D. King, S. Suzuki, J. Raymond, A. Zucca, T. Lanting, F. Altomare, A.J. Berkley, S. Ejtemaee, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, J.D. Whittaker, J. Yao, R. Harris, D.A. Lidar, H. Nishimori, M.H. Amin, Coherent quantum annealing in a programmable 2,000 qubit Ising chain. Nature Physics 18(11), 1324–1328 (2022). 10.1038/s41567-022-01741-6 [8] N. Mohseni, P.L. McMahon, T. Byrnes, Ising machines as hardware solvers of combinatorial optimization problems. Nature Reviews Physics 4, 363–379 (2022). 10.1038/s42254-022-00440-8 [9] A.D. King, J. Raymond, T. Lanting, R. Harris, A. Zucca, F. Altomare, A.J. Berkley, K. Boothby, S. Ejtemaee, C. Enderud, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, R. Molavi, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, N. Tsai, M. Volkmann, J.D. Whittaker, J. Yao, A.W. Sandvik, M.H. Amin, Quantum critical dynamics in a 5000-qubit programmable spin glass. Nature (2023). 10.1038/s41586-023-05867-2. arxiv:2207.13800 [cond-mat, physics:quant-ph] [10] A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.G. Dickson, M.W. Johnson, M.H. Amin, R. Harris, F. Altomare, A.J. Berkley, P. Bunyk, J. Cai, E.M. Chapple, P. Chavez, F. Cioata, T. Cirip, P. Debuen, M. Drew-Brook, C. Enderud, S. Gildert, F. Hamze, J.P. Hilton, E. Hoskinson, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Lanting, T. Mahon, R. Neufeld, T. Oh, I. Perminov, C. Petroff, A. Przybysz, C. Rich, P. Spear, A. Tcaciuc, M.C. Thom, E. Tolkacheva, S. Uchaikin, J. Wang, A.B. Wilson, Z. Merali, G. Rose, Thermally assisted quantum annealing of a 16-qubit problem. Nature Communications 4, 1903 (2013). 10.1038/ncomms2920 [6] A.D. King, J. Carrasquilla, J. Raymond, I. Ozfidan, E. Andriyash, A. Berkley, M. Reis, T. Lanting, R. Harris, F. Altomare, K. Boothby, P.I. Bunyk, C. Enderud, A. Fréchette, E. Hoskinson, N. Ladizinsky, T. Oh, G. Poulin-Lamarre, C. Rich, Y. Sato, A.Y. Smirnov, L.J. Swenson, M.H. Volkmann, J. Whittaker, J. Yao, E. Ladizinsky, M.W. Johnson, J. Hilton, M.H. Amin, Observation of topological phenomena in a programmable lattice of 1,800 qubits. Nature 560(7719), 456–460 (2018). 10.1038/s41586-018-0410-x [7] A.D. King, S. Suzuki, J. Raymond, A. Zucca, T. Lanting, F. Altomare, A.J. Berkley, S. Ejtemaee, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, J.D. Whittaker, J. Yao, R. Harris, D.A. Lidar, H. Nishimori, M.H. Amin, Coherent quantum annealing in a programmable 2,000 qubit Ising chain. Nature Physics 18(11), 1324–1328 (2022). 10.1038/s41567-022-01741-6 [8] N. Mohseni, P.L. McMahon, T. Byrnes, Ising machines as hardware solvers of combinatorial optimization problems. Nature Reviews Physics 4, 363–379 (2022). 10.1038/s42254-022-00440-8 [9] A.D. King, J. Raymond, T. Lanting, R. Harris, A. Zucca, F. Altomare, A.J. Berkley, K. Boothby, S. Ejtemaee, C. Enderud, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, R. Molavi, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, N. Tsai, M. Volkmann, J.D. Whittaker, J. Yao, A.W. Sandvik, M.H. Amin, Quantum critical dynamics in a 5000-qubit programmable spin glass. Nature (2023). 10.1038/s41586-023-05867-2. arxiv:2207.13800 [cond-mat, physics:quant-ph] [10] A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.D. King, J. Carrasquilla, J. Raymond, I. Ozfidan, E. Andriyash, A. Berkley, M. Reis, T. Lanting, R. Harris, F. Altomare, K. Boothby, P.I. Bunyk, C. Enderud, A. Fréchette, E. Hoskinson, N. Ladizinsky, T. Oh, G. Poulin-Lamarre, C. Rich, Y. Sato, A.Y. Smirnov, L.J. Swenson, M.H. Volkmann, J. Whittaker, J. Yao, E. Ladizinsky, M.W. Johnson, J. Hilton, M.H. Amin, Observation of topological phenomena in a programmable lattice of 1,800 qubits. Nature 560(7719), 456–460 (2018). 10.1038/s41586-018-0410-x [7] A.D. King, S. Suzuki, J. Raymond, A. Zucca, T. Lanting, F. Altomare, A.J. Berkley, S. Ejtemaee, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, J.D. Whittaker, J. Yao, R. Harris, D.A. Lidar, H. Nishimori, M.H. Amin, Coherent quantum annealing in a programmable 2,000 qubit Ising chain. Nature Physics 18(11), 1324–1328 (2022). 10.1038/s41567-022-01741-6 [8] N. Mohseni, P.L. McMahon, T. Byrnes, Ising machines as hardware solvers of combinatorial optimization problems. Nature Reviews Physics 4, 363–379 (2022). 10.1038/s42254-022-00440-8 [9] A.D. King, J. Raymond, T. Lanting, R. Harris, A. Zucca, F. Altomare, A.J. Berkley, K. Boothby, S. Ejtemaee, C. Enderud, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, R. Molavi, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, N. Tsai, M. Volkmann, J.D. Whittaker, J. Yao, A.W. Sandvik, M.H. Amin, Quantum critical dynamics in a 5000-qubit programmable spin glass. Nature (2023). 10.1038/s41586-023-05867-2. arxiv:2207.13800 [cond-mat, physics:quant-ph] [10] A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.D. King, S. Suzuki, J. Raymond, A. Zucca, T. Lanting, F. Altomare, A.J. Berkley, S. Ejtemaee, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, J.D. Whittaker, J. Yao, R. Harris, D.A. Lidar, H. Nishimori, M.H. Amin, Coherent quantum annealing in a programmable 2,000 qubit Ising chain. Nature Physics 18(11), 1324–1328 (2022). 10.1038/s41567-022-01741-6 [8] N. Mohseni, P.L. McMahon, T. Byrnes, Ising machines as hardware solvers of combinatorial optimization problems. Nature Reviews Physics 4, 363–379 (2022). 10.1038/s42254-022-00440-8 [9] A.D. King, J. Raymond, T. Lanting, R. Harris, A. Zucca, F. Altomare, A.J. Berkley, K. Boothby, S. Ejtemaee, C. Enderud, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, R. Molavi, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, N. Tsai, M. Volkmann, J.D. Whittaker, J. Yao, A.W. Sandvik, M.H. Amin, Quantum critical dynamics in a 5000-qubit programmable spin glass. Nature (2023). 10.1038/s41586-023-05867-2. arxiv:2207.13800 [cond-mat, physics:quant-ph] [10] A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N. Mohseni, P.L. McMahon, T. Byrnes, Ising machines as hardware solvers of combinatorial optimization problems. Nature Reviews Physics 4, 363–379 (2022). 10.1038/s42254-022-00440-8 [9] A.D. King, J. Raymond, T. Lanting, R. Harris, A. Zucca, F. Altomare, A.J. Berkley, K. Boothby, S. Ejtemaee, C. Enderud, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, R. Molavi, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, N. Tsai, M. Volkmann, J.D. Whittaker, J. Yao, A.W. Sandvik, M.H. Amin, Quantum critical dynamics in a 5000-qubit programmable spin glass. Nature (2023). 10.1038/s41586-023-05867-2. arxiv:2207.13800 [cond-mat, physics:quant-ph] [10] A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.D. King, J. Raymond, T. Lanting, R. Harris, A. Zucca, F. Altomare, A.J. Berkley, K. Boothby, S. Ejtemaee, C. Enderud, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, R. Molavi, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, N. Tsai, M. Volkmann, J.D. Whittaker, J. Yao, A.W. Sandvik, M.H. Amin, Quantum critical dynamics in a 5000-qubit programmable spin glass. Nature (2023). 10.1038/s41586-023-05867-2. arxiv:2207.13800 [cond-mat, physics:quant-ph] [10] A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202
  3. Science 284, 779 (1999). 10.1126/science.284.5415.779 [4] M.W. Johnson, M.H.S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris, A.J. Berkley, J. Johansson, P. Bunyk, E.M. Chapple, C. Enderud, J.P. Hilton, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Oh, I. Perminov, C. Rich, M.C. Thom, E. Tolkacheva, C.J.S. Truncik, S. Uchaikin, J. Wang, B. Wilson, G. Rose, Quantum annealing with manufactured spins. Nature 473(7346), 194–198 (2011). 10.1038/nature10012 [5] N.G. Dickson, M.W. Johnson, M.H. Amin, R. Harris, F. Altomare, A.J. Berkley, P. Bunyk, J. Cai, E.M. Chapple, P. Chavez, F. Cioata, T. Cirip, P. Debuen, M. Drew-Brook, C. Enderud, S. Gildert, F. Hamze, J.P. Hilton, E. Hoskinson, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Lanting, T. Mahon, R. Neufeld, T. Oh, I. Perminov, C. Petroff, A. Przybysz, C. Rich, P. Spear, A. Tcaciuc, M.C. Thom, E. Tolkacheva, S. Uchaikin, J. Wang, A.B. Wilson, Z. Merali, G. Rose, Thermally assisted quantum annealing of a 16-qubit problem. Nature Communications 4, 1903 (2013). 10.1038/ncomms2920 [6] A.D. King, J. Carrasquilla, J. Raymond, I. Ozfidan, E. Andriyash, A. Berkley, M. Reis, T. Lanting, R. Harris, F. Altomare, K. Boothby, P.I. Bunyk, C. Enderud, A. Fréchette, E. Hoskinson, N. Ladizinsky, T. Oh, G. Poulin-Lamarre, C. Rich, Y. Sato, A.Y. Smirnov, L.J. Swenson, M.H. Volkmann, J. Whittaker, J. Yao, E. Ladizinsky, M.W. Johnson, J. Hilton, M.H. Amin, Observation of topological phenomena in a programmable lattice of 1,800 qubits. Nature 560(7719), 456–460 (2018). 10.1038/s41586-018-0410-x [7] A.D. King, S. Suzuki, J. Raymond, A. Zucca, T. Lanting, F. Altomare, A.J. Berkley, S. Ejtemaee, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, J.D. Whittaker, J. Yao, R. Harris, D.A. Lidar, H. Nishimori, M.H. Amin, Coherent quantum annealing in a programmable 2,000 qubit Ising chain. Nature Physics 18(11), 1324–1328 (2022). 10.1038/s41567-022-01741-6 [8] N. Mohseni, P.L. McMahon, T. Byrnes, Ising machines as hardware solvers of combinatorial optimization problems. Nature Reviews Physics 4, 363–379 (2022). 10.1038/s42254-022-00440-8 [9] A.D. King, J. Raymond, T. Lanting, R. Harris, A. Zucca, F. Altomare, A.J. Berkley, K. Boothby, S. Ejtemaee, C. Enderud, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, R. Molavi, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, N. Tsai, M. Volkmann, J.D. Whittaker, J. Yao, A.W. Sandvik, M.H. Amin, Quantum critical dynamics in a 5000-qubit programmable spin glass. Nature (2023). 10.1038/s41586-023-05867-2. arxiv:2207.13800 [cond-mat, physics:quant-ph] [10] A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M.W. Johnson, M.H.S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris, A.J. Berkley, J. Johansson, P. Bunyk, E.M. Chapple, C. Enderud, J.P. Hilton, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Oh, I. Perminov, C. Rich, M.C. Thom, E. Tolkacheva, C.J.S. Truncik, S. Uchaikin, J. Wang, B. Wilson, G. Rose, Quantum annealing with manufactured spins. Nature 473(7346), 194–198 (2011). 10.1038/nature10012 [5] N.G. Dickson, M.W. Johnson, M.H. Amin, R. Harris, F. Altomare, A.J. Berkley, P. Bunyk, J. Cai, E.M. Chapple, P. Chavez, F. Cioata, T. Cirip, P. Debuen, M. Drew-Brook, C. Enderud, S. Gildert, F. Hamze, J.P. Hilton, E. Hoskinson, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Lanting, T. Mahon, R. Neufeld, T. Oh, I. Perminov, C. Petroff, A. Przybysz, C. Rich, P. Spear, A. Tcaciuc, M.C. Thom, E. Tolkacheva, S. Uchaikin, J. Wang, A.B. Wilson, Z. Merali, G. Rose, Thermally assisted quantum annealing of a 16-qubit problem. Nature Communications 4, 1903 (2013). 10.1038/ncomms2920 [6] A.D. King, J. Carrasquilla, J. Raymond, I. Ozfidan, E. Andriyash, A. Berkley, M. Reis, T. Lanting, R. Harris, F. Altomare, K. Boothby, P.I. Bunyk, C. Enderud, A. Fréchette, E. Hoskinson, N. Ladizinsky, T. Oh, G. Poulin-Lamarre, C. Rich, Y. Sato, A.Y. Smirnov, L.J. Swenson, M.H. Volkmann, J. Whittaker, J. Yao, E. Ladizinsky, M.W. Johnson, J. Hilton, M.H. Amin, Observation of topological phenomena in a programmable lattice of 1,800 qubits. Nature 560(7719), 456–460 (2018). 10.1038/s41586-018-0410-x [7] A.D. King, S. Suzuki, J. Raymond, A. Zucca, T. Lanting, F. Altomare, A.J. Berkley, S. Ejtemaee, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, J.D. Whittaker, J. Yao, R. Harris, D.A. Lidar, H. Nishimori, M.H. Amin, Coherent quantum annealing in a programmable 2,000 qubit Ising chain. Nature Physics 18(11), 1324–1328 (2022). 10.1038/s41567-022-01741-6 [8] N. Mohseni, P.L. McMahon, T. Byrnes, Ising machines as hardware solvers of combinatorial optimization problems. Nature Reviews Physics 4, 363–379 (2022). 10.1038/s42254-022-00440-8 [9] A.D. King, J. Raymond, T. Lanting, R. Harris, A. Zucca, F. Altomare, A.J. Berkley, K. Boothby, S. Ejtemaee, C. Enderud, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, R. Molavi, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, N. Tsai, M. Volkmann, J.D. Whittaker, J. Yao, A.W. Sandvik, M.H. Amin, Quantum critical dynamics in a 5000-qubit programmable spin glass. Nature (2023). 10.1038/s41586-023-05867-2. arxiv:2207.13800 [cond-mat, physics:quant-ph] [10] A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.G. Dickson, M.W. Johnson, M.H. Amin, R. Harris, F. Altomare, A.J. Berkley, P. Bunyk, J. Cai, E.M. Chapple, P. Chavez, F. Cioata, T. Cirip, P. Debuen, M. Drew-Brook, C. Enderud, S. Gildert, F. Hamze, J.P. Hilton, E. Hoskinson, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Lanting, T. Mahon, R. Neufeld, T. Oh, I. Perminov, C. Petroff, A. Przybysz, C. Rich, P. Spear, A. Tcaciuc, M.C. Thom, E. Tolkacheva, S. Uchaikin, J. Wang, A.B. Wilson, Z. Merali, G. Rose, Thermally assisted quantum annealing of a 16-qubit problem. Nature Communications 4, 1903 (2013). 10.1038/ncomms2920 [6] A.D. King, J. Carrasquilla, J. Raymond, I. Ozfidan, E. Andriyash, A. Berkley, M. Reis, T. Lanting, R. Harris, F. Altomare, K. Boothby, P.I. Bunyk, C. Enderud, A. Fréchette, E. Hoskinson, N. Ladizinsky, T. Oh, G. Poulin-Lamarre, C. Rich, Y. Sato, A.Y. Smirnov, L.J. Swenson, M.H. Volkmann, J. Whittaker, J. Yao, E. Ladizinsky, M.W. Johnson, J. Hilton, M.H. Amin, Observation of topological phenomena in a programmable lattice of 1,800 qubits. Nature 560(7719), 456–460 (2018). 10.1038/s41586-018-0410-x [7] A.D. King, S. Suzuki, J. Raymond, A. Zucca, T. Lanting, F. Altomare, A.J. Berkley, S. Ejtemaee, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, J.D. Whittaker, J. Yao, R. Harris, D.A. Lidar, H. Nishimori, M.H. Amin, Coherent quantum annealing in a programmable 2,000 qubit Ising chain. Nature Physics 18(11), 1324–1328 (2022). 10.1038/s41567-022-01741-6 [8] N. Mohseni, P.L. McMahon, T. Byrnes, Ising machines as hardware solvers of combinatorial optimization problems. Nature Reviews Physics 4, 363–379 (2022). 10.1038/s42254-022-00440-8 [9] A.D. King, J. Raymond, T. Lanting, R. Harris, A. Zucca, F. Altomare, A.J. Berkley, K. Boothby, S. Ejtemaee, C. Enderud, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, R. Molavi, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, N. Tsai, M. Volkmann, J.D. Whittaker, J. Yao, A.W. Sandvik, M.H. Amin, Quantum critical dynamics in a 5000-qubit programmable spin glass. Nature (2023). 10.1038/s41586-023-05867-2. arxiv:2207.13800 [cond-mat, physics:quant-ph] [10] A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.D. King, J. Carrasquilla, J. Raymond, I. Ozfidan, E. Andriyash, A. Berkley, M. Reis, T. Lanting, R. Harris, F. Altomare, K. Boothby, P.I. Bunyk, C. Enderud, A. Fréchette, E. Hoskinson, N. Ladizinsky, T. Oh, G. Poulin-Lamarre, C. Rich, Y. Sato, A.Y. Smirnov, L.J. Swenson, M.H. Volkmann, J. Whittaker, J. Yao, E. Ladizinsky, M.W. Johnson, J. Hilton, M.H. Amin, Observation of topological phenomena in a programmable lattice of 1,800 qubits. Nature 560(7719), 456–460 (2018). 10.1038/s41586-018-0410-x [7] A.D. King, S. Suzuki, J. Raymond, A. Zucca, T. Lanting, F. Altomare, A.J. Berkley, S. Ejtemaee, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, J.D. Whittaker, J. Yao, R. Harris, D.A. Lidar, H. Nishimori, M.H. Amin, Coherent quantum annealing in a programmable 2,000 qubit Ising chain. Nature Physics 18(11), 1324–1328 (2022). 10.1038/s41567-022-01741-6 [8] N. Mohseni, P.L. McMahon, T. Byrnes, Ising machines as hardware solvers of combinatorial optimization problems. Nature Reviews Physics 4, 363–379 (2022). 10.1038/s42254-022-00440-8 [9] A.D. King, J. Raymond, T. Lanting, R. Harris, A. Zucca, F. Altomare, A.J. Berkley, K. Boothby, S. Ejtemaee, C. Enderud, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, R. Molavi, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, N. Tsai, M. Volkmann, J.D. Whittaker, J. Yao, A.W. Sandvik, M.H. Amin, Quantum critical dynamics in a 5000-qubit programmable spin glass. Nature (2023). 10.1038/s41586-023-05867-2. arxiv:2207.13800 [cond-mat, physics:quant-ph] [10] A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.D. King, S. Suzuki, J. Raymond, A. Zucca, T. Lanting, F. Altomare, A.J. Berkley, S. Ejtemaee, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, J.D. Whittaker, J. Yao, R. Harris, D.A. Lidar, H. Nishimori, M.H. Amin, Coherent quantum annealing in a programmable 2,000 qubit Ising chain. Nature Physics 18(11), 1324–1328 (2022). 10.1038/s41567-022-01741-6 [8] N. Mohseni, P.L. McMahon, T. Byrnes, Ising machines as hardware solvers of combinatorial optimization problems. Nature Reviews Physics 4, 363–379 (2022). 10.1038/s42254-022-00440-8 [9] A.D. King, J. Raymond, T. Lanting, R. Harris, A. Zucca, F. Altomare, A.J. Berkley, K. Boothby, S. Ejtemaee, C. Enderud, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, R. Molavi, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, N. Tsai, M. Volkmann, J.D. Whittaker, J. Yao, A.W. Sandvik, M.H. Amin, Quantum critical dynamics in a 5000-qubit programmable spin glass. Nature (2023). 10.1038/s41586-023-05867-2. arxiv:2207.13800 [cond-mat, physics:quant-ph] [10] A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N. Mohseni, P.L. McMahon, T. Byrnes, Ising machines as hardware solvers of combinatorial optimization problems. Nature Reviews Physics 4, 363–379 (2022). 10.1038/s42254-022-00440-8 [9] A.D. King, J. Raymond, T. Lanting, R. Harris, A. Zucca, F. Altomare, A.J. Berkley, K. Boothby, S. Ejtemaee, C. Enderud, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, R. Molavi, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, N. Tsai, M. Volkmann, J.D. Whittaker, J. Yao, A.W. Sandvik, M.H. Amin, Quantum critical dynamics in a 5000-qubit programmable spin glass. Nature (2023). 10.1038/s41586-023-05867-2. arxiv:2207.13800 [cond-mat, physics:quant-ph] [10] A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.D. King, J. Raymond, T. Lanting, R. Harris, A. Zucca, F. Altomare, A.J. Berkley, K. Boothby, S. Ejtemaee, C. Enderud, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, R. Molavi, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, N. Tsai, M. Volkmann, J.D. Whittaker, J. Yao, A.W. Sandvik, M.H. Amin, Quantum critical dynamics in a 5000-qubit programmable spin glass. Nature (2023). 10.1038/s41586-023-05867-2. arxiv:2207.13800 [cond-mat, physics:quant-ph] [10] A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202
  4. Nature 473(7346), 194–198 (2011). 10.1038/nature10012 [5] N.G. Dickson, M.W. Johnson, M.H. Amin, R. Harris, F. Altomare, A.J. Berkley, P. Bunyk, J. Cai, E.M. Chapple, P. Chavez, F. Cioata, T. Cirip, P. Debuen, M. Drew-Brook, C. Enderud, S. Gildert, F. Hamze, J.P. Hilton, E. Hoskinson, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Lanting, T. Mahon, R. Neufeld, T. Oh, I. Perminov, C. Petroff, A. Przybysz, C. Rich, P. Spear, A. Tcaciuc, M.C. Thom, E. Tolkacheva, S. Uchaikin, J. Wang, A.B. Wilson, Z. Merali, G. Rose, Thermally assisted quantum annealing of a 16-qubit problem. Nature Communications 4, 1903 (2013). 10.1038/ncomms2920 [6] A.D. King, J. Carrasquilla, J. Raymond, I. Ozfidan, E. Andriyash, A. Berkley, M. Reis, T. Lanting, R. Harris, F. Altomare, K. Boothby, P.I. Bunyk, C. Enderud, A. Fréchette, E. Hoskinson, N. Ladizinsky, T. Oh, G. Poulin-Lamarre, C. Rich, Y. Sato, A.Y. Smirnov, L.J. Swenson, M.H. Volkmann, J. Whittaker, J. Yao, E. Ladizinsky, M.W. Johnson, J. Hilton, M.H. Amin, Observation of topological phenomena in a programmable lattice of 1,800 qubits. Nature 560(7719), 456–460 (2018). 10.1038/s41586-018-0410-x [7] A.D. King, S. Suzuki, J. Raymond, A. Zucca, T. Lanting, F. Altomare, A.J. Berkley, S. Ejtemaee, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, J.D. Whittaker, J. Yao, R. Harris, D.A. Lidar, H. Nishimori, M.H. Amin, Coherent quantum annealing in a programmable 2,000 qubit Ising chain. Nature Physics 18(11), 1324–1328 (2022). 10.1038/s41567-022-01741-6 [8] N. Mohseni, P.L. McMahon, T. Byrnes, Ising machines as hardware solvers of combinatorial optimization problems. Nature Reviews Physics 4, 363–379 (2022). 10.1038/s42254-022-00440-8 [9] A.D. King, J. Raymond, T. Lanting, R. Harris, A. Zucca, F. Altomare, A.J. Berkley, K. Boothby, S. Ejtemaee, C. Enderud, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, R. Molavi, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, N. Tsai, M. Volkmann, J.D. Whittaker, J. Yao, A.W. Sandvik, M.H. Amin, Quantum critical dynamics in a 5000-qubit programmable spin glass. Nature (2023). 10.1038/s41586-023-05867-2. arxiv:2207.13800 [cond-mat, physics:quant-ph] [10] A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.G. Dickson, M.W. Johnson, M.H. Amin, R. Harris, F. Altomare, A.J. Berkley, P. Bunyk, J. Cai, E.M. Chapple, P. Chavez, F. Cioata, T. Cirip, P. Debuen, M. Drew-Brook, C. Enderud, S. Gildert, F. Hamze, J.P. Hilton, E. Hoskinson, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Lanting, T. Mahon, R. Neufeld, T. Oh, I. Perminov, C. Petroff, A. Przybysz, C. Rich, P. Spear, A. Tcaciuc, M.C. Thom, E. Tolkacheva, S. Uchaikin, J. Wang, A.B. Wilson, Z. Merali, G. Rose, Thermally assisted quantum annealing of a 16-qubit problem. Nature Communications 4, 1903 (2013). 10.1038/ncomms2920 [6] A.D. King, J. Carrasquilla, J. Raymond, I. Ozfidan, E. Andriyash, A. Berkley, M. Reis, T. Lanting, R. Harris, F. Altomare, K. Boothby, P.I. Bunyk, C. Enderud, A. Fréchette, E. Hoskinson, N. Ladizinsky, T. Oh, G. Poulin-Lamarre, C. Rich, Y. Sato, A.Y. Smirnov, L.J. Swenson, M.H. Volkmann, J. Whittaker, J. Yao, E. Ladizinsky, M.W. Johnson, J. Hilton, M.H. Amin, Observation of topological phenomena in a programmable lattice of 1,800 qubits. Nature 560(7719), 456–460 (2018). 10.1038/s41586-018-0410-x [7] A.D. King, S. Suzuki, J. Raymond, A. Zucca, T. Lanting, F. Altomare, A.J. Berkley, S. Ejtemaee, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, J.D. Whittaker, J. Yao, R. Harris, D.A. Lidar, H. Nishimori, M.H. Amin, Coherent quantum annealing in a programmable 2,000 qubit Ising chain. Nature Physics 18(11), 1324–1328 (2022). 10.1038/s41567-022-01741-6 [8] N. Mohseni, P.L. McMahon, T. Byrnes, Ising machines as hardware solvers of combinatorial optimization problems. Nature Reviews Physics 4, 363–379 (2022). 10.1038/s42254-022-00440-8 [9] A.D. King, J. Raymond, T. Lanting, R. Harris, A. Zucca, F. Altomare, A.J. Berkley, K. Boothby, S. Ejtemaee, C. Enderud, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, R. Molavi, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, N. Tsai, M. Volkmann, J.D. Whittaker, J. Yao, A.W. Sandvik, M.H. Amin, Quantum critical dynamics in a 5000-qubit programmable spin glass. Nature (2023). 10.1038/s41586-023-05867-2. arxiv:2207.13800 [cond-mat, physics:quant-ph] [10] A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.D. King, J. Carrasquilla, J. Raymond, I. Ozfidan, E. Andriyash, A. Berkley, M. Reis, T. Lanting, R. Harris, F. Altomare, K. Boothby, P.I. Bunyk, C. Enderud, A. Fréchette, E. Hoskinson, N. Ladizinsky, T. Oh, G. Poulin-Lamarre, C. Rich, Y. Sato, A.Y. Smirnov, L.J. Swenson, M.H. Volkmann, J. Whittaker, J. Yao, E. Ladizinsky, M.W. Johnson, J. Hilton, M.H. Amin, Observation of topological phenomena in a programmable lattice of 1,800 qubits. Nature 560(7719), 456–460 (2018). 10.1038/s41586-018-0410-x [7] A.D. King, S. Suzuki, J. Raymond, A. Zucca, T. Lanting, F. Altomare, A.J. Berkley, S. Ejtemaee, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, J.D. Whittaker, J. Yao, R. Harris, D.A. Lidar, H. Nishimori, M.H. Amin, Coherent quantum annealing in a programmable 2,000 qubit Ising chain. Nature Physics 18(11), 1324–1328 (2022). 10.1038/s41567-022-01741-6 [8] N. Mohseni, P.L. McMahon, T. Byrnes, Ising machines as hardware solvers of combinatorial optimization problems. Nature Reviews Physics 4, 363–379 (2022). 10.1038/s42254-022-00440-8 [9] A.D. King, J. Raymond, T. Lanting, R. Harris, A. Zucca, F. Altomare, A.J. Berkley, K. Boothby, S. Ejtemaee, C. Enderud, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, R. Molavi, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, N. Tsai, M. Volkmann, J.D. Whittaker, J. Yao, A.W. Sandvik, M.H. Amin, Quantum critical dynamics in a 5000-qubit programmable spin glass. Nature (2023). 10.1038/s41586-023-05867-2. arxiv:2207.13800 [cond-mat, physics:quant-ph] [10] A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.D. King, S. Suzuki, J. Raymond, A. Zucca, T. Lanting, F. Altomare, A.J. Berkley, S. Ejtemaee, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, J.D. Whittaker, J. Yao, R. Harris, D.A. Lidar, H. Nishimori, M.H. Amin, Coherent quantum annealing in a programmable 2,000 qubit Ising chain. Nature Physics 18(11), 1324–1328 (2022). 10.1038/s41567-022-01741-6 [8] N. Mohseni, P.L. McMahon, T. Byrnes, Ising machines as hardware solvers of combinatorial optimization problems. Nature Reviews Physics 4, 363–379 (2022). 10.1038/s42254-022-00440-8 [9] A.D. King, J. Raymond, T. Lanting, R. Harris, A. Zucca, F. Altomare, A.J. Berkley, K. Boothby, S. Ejtemaee, C. Enderud, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, R. Molavi, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, N. Tsai, M. Volkmann, J.D. Whittaker, J. Yao, A.W. Sandvik, M.H. Amin, Quantum critical dynamics in a 5000-qubit programmable spin glass. Nature (2023). 10.1038/s41586-023-05867-2. arxiv:2207.13800 [cond-mat, physics:quant-ph] [10] A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N. Mohseni, P.L. McMahon, T. Byrnes, Ising machines as hardware solvers of combinatorial optimization problems. Nature Reviews Physics 4, 363–379 (2022). 10.1038/s42254-022-00440-8 [9] A.D. King, J. Raymond, T. Lanting, R. Harris, A. Zucca, F. Altomare, A.J. Berkley, K. Boothby, S. Ejtemaee, C. Enderud, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, R. Molavi, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, N. Tsai, M. Volkmann, J.D. Whittaker, J. Yao, A.W. Sandvik, M.H. Amin, Quantum critical dynamics in a 5000-qubit programmable spin glass. Nature (2023). 10.1038/s41586-023-05867-2. arxiv:2207.13800 [cond-mat, physics:quant-ph] [10] A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.D. King, J. Raymond, T. Lanting, R. Harris, A. Zucca, F. Altomare, A.J. Berkley, K. Boothby, S. Ejtemaee, C. Enderud, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, R. Molavi, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, N. Tsai, M. Volkmann, J.D. Whittaker, J. Yao, A.W. Sandvik, M.H. Amin, Quantum critical dynamics in a 5000-qubit programmable spin glass. Nature (2023). 10.1038/s41586-023-05867-2. arxiv:2207.13800 [cond-mat, physics:quant-ph] [10] A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202
  5. Nature Communications 4, 1903 (2013). 10.1038/ncomms2920 [6] A.D. King, J. Carrasquilla, J. Raymond, I. Ozfidan, E. Andriyash, A. Berkley, M. Reis, T. Lanting, R. Harris, F. Altomare, K. Boothby, P.I. Bunyk, C. Enderud, A. Fréchette, E. Hoskinson, N. Ladizinsky, T. Oh, G. Poulin-Lamarre, C. Rich, Y. Sato, A.Y. Smirnov, L.J. Swenson, M.H. Volkmann, J. Whittaker, J. Yao, E. Ladizinsky, M.W. Johnson, J. Hilton, M.H. Amin, Observation of topological phenomena in a programmable lattice of 1,800 qubits. Nature 560(7719), 456–460 (2018). 10.1038/s41586-018-0410-x [7] A.D. King, S. Suzuki, J. Raymond, A. Zucca, T. Lanting, F. Altomare, A.J. Berkley, S. Ejtemaee, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, J.D. Whittaker, J. Yao, R. Harris, D.A. Lidar, H. Nishimori, M.H. Amin, Coherent quantum annealing in a programmable 2,000 qubit Ising chain. Nature Physics 18(11), 1324–1328 (2022). 10.1038/s41567-022-01741-6 [8] N. Mohseni, P.L. McMahon, T. Byrnes, Ising machines as hardware solvers of combinatorial optimization problems. Nature Reviews Physics 4, 363–379 (2022). 10.1038/s42254-022-00440-8 [9] A.D. King, J. Raymond, T. Lanting, R. Harris, A. Zucca, F. Altomare, A.J. Berkley, K. Boothby, S. Ejtemaee, C. Enderud, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, R. Molavi, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, N. Tsai, M. Volkmann, J.D. Whittaker, J. Yao, A.W. Sandvik, M.H. Amin, Quantum critical dynamics in a 5000-qubit programmable spin glass. Nature (2023). 10.1038/s41586-023-05867-2. arxiv:2207.13800 [cond-mat, physics:quant-ph] [10] A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.D. King, J. Carrasquilla, J. Raymond, I. Ozfidan, E. Andriyash, A. Berkley, M. Reis, T. Lanting, R. Harris, F. Altomare, K. Boothby, P.I. Bunyk, C. Enderud, A. Fréchette, E. Hoskinson, N. Ladizinsky, T. Oh, G. Poulin-Lamarre, C. Rich, Y. Sato, A.Y. Smirnov, L.J. Swenson, M.H. Volkmann, J. Whittaker, J. Yao, E. Ladizinsky, M.W. Johnson, J. Hilton, M.H. Amin, Observation of topological phenomena in a programmable lattice of 1,800 qubits. Nature 560(7719), 456–460 (2018). 10.1038/s41586-018-0410-x [7] A.D. King, S. Suzuki, J. Raymond, A. Zucca, T. Lanting, F. Altomare, A.J. Berkley, S. Ejtemaee, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, J.D. Whittaker, J. Yao, R. Harris, D.A. Lidar, H. Nishimori, M.H. Amin, Coherent quantum annealing in a programmable 2,000 qubit Ising chain. Nature Physics 18(11), 1324–1328 (2022). 10.1038/s41567-022-01741-6 [8] N. Mohseni, P.L. McMahon, T. Byrnes, Ising machines as hardware solvers of combinatorial optimization problems. Nature Reviews Physics 4, 363–379 (2022). 10.1038/s42254-022-00440-8 [9] A.D. King, J. Raymond, T. Lanting, R. Harris, A. Zucca, F. Altomare, A.J. Berkley, K. Boothby, S. Ejtemaee, C. Enderud, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, R. Molavi, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, N. Tsai, M. Volkmann, J.D. Whittaker, J. Yao, A.W. Sandvik, M.H. Amin, Quantum critical dynamics in a 5000-qubit programmable spin glass. Nature (2023). 10.1038/s41586-023-05867-2. arxiv:2207.13800 [cond-mat, physics:quant-ph] [10] A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.D. King, S. Suzuki, J. Raymond, A. Zucca, T. Lanting, F. Altomare, A.J. Berkley, S. Ejtemaee, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, J.D. Whittaker, J. Yao, R. Harris, D.A. Lidar, H. Nishimori, M.H. Amin, Coherent quantum annealing in a programmable 2,000 qubit Ising chain. Nature Physics 18(11), 1324–1328 (2022). 10.1038/s41567-022-01741-6 [8] N. Mohseni, P.L. McMahon, T. Byrnes, Ising machines as hardware solvers of combinatorial optimization problems. Nature Reviews Physics 4, 363–379 (2022). 10.1038/s42254-022-00440-8 [9] A.D. King, J. Raymond, T. Lanting, R. Harris, A. Zucca, F. Altomare, A.J. Berkley, K. Boothby, S. Ejtemaee, C. Enderud, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, R. Molavi, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, N. Tsai, M. Volkmann, J.D. Whittaker, J. Yao, A.W. Sandvik, M.H. Amin, Quantum critical dynamics in a 5000-qubit programmable spin glass. Nature (2023). 10.1038/s41586-023-05867-2. arxiv:2207.13800 [cond-mat, physics:quant-ph] [10] A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N. Mohseni, P.L. McMahon, T. Byrnes, Ising machines as hardware solvers of combinatorial optimization problems. Nature Reviews Physics 4, 363–379 (2022). 10.1038/s42254-022-00440-8 [9] A.D. King, J. Raymond, T. Lanting, R. Harris, A. Zucca, F. Altomare, A.J. Berkley, K. Boothby, S. Ejtemaee, C. Enderud, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, R. Molavi, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, N. Tsai, M. Volkmann, J.D. Whittaker, J. Yao, A.W. Sandvik, M.H. Amin, Quantum critical dynamics in a 5000-qubit programmable spin glass. Nature (2023). 10.1038/s41586-023-05867-2. arxiv:2207.13800 [cond-mat, physics:quant-ph] [10] A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.D. King, J. Raymond, T. Lanting, R. Harris, A. Zucca, F. Altomare, A.J. Berkley, K. Boothby, S. Ejtemaee, C. Enderud, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, R. Molavi, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, N. Tsai, M. Volkmann, J.D. Whittaker, J. Yao, A.W. Sandvik, M.H. Amin, Quantum critical dynamics in a 5000-qubit programmable spin glass. Nature (2023). 10.1038/s41586-023-05867-2. arxiv:2207.13800 [cond-mat, physics:quant-ph] [10] A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202
  6. Nature 560(7719), 456–460 (2018). 10.1038/s41586-018-0410-x [7] A.D. King, S. Suzuki, J. Raymond, A. Zucca, T. Lanting, F. Altomare, A.J. Berkley, S. Ejtemaee, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, J.D. Whittaker, J. Yao, R. Harris, D.A. Lidar, H. Nishimori, M.H. Amin, Coherent quantum annealing in a programmable 2,000 qubit Ising chain. Nature Physics 18(11), 1324–1328 (2022). 10.1038/s41567-022-01741-6 [8] N. Mohseni, P.L. McMahon, T. Byrnes, Ising machines as hardware solvers of combinatorial optimization problems. Nature Reviews Physics 4, 363–379 (2022). 10.1038/s42254-022-00440-8 [9] A.D. King, J. Raymond, T. Lanting, R. Harris, A. Zucca, F. Altomare, A.J. Berkley, K. Boothby, S. Ejtemaee, C. Enderud, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, R. Molavi, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, N. Tsai, M. Volkmann, J.D. Whittaker, J. Yao, A.W. Sandvik, M.H. Amin, Quantum critical dynamics in a 5000-qubit programmable spin glass. Nature (2023). 10.1038/s41586-023-05867-2. arxiv:2207.13800 [cond-mat, physics:quant-ph] [10] A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.D. King, S. Suzuki, J. Raymond, A. Zucca, T. Lanting, F. Altomare, A.J. Berkley, S. Ejtemaee, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, J.D. Whittaker, J. Yao, R. Harris, D.A. Lidar, H. Nishimori, M.H. Amin, Coherent quantum annealing in a programmable 2,000 qubit Ising chain. Nature Physics 18(11), 1324–1328 (2022). 10.1038/s41567-022-01741-6 [8] N. Mohseni, P.L. McMahon, T. Byrnes, Ising machines as hardware solvers of combinatorial optimization problems. Nature Reviews Physics 4, 363–379 (2022). 10.1038/s42254-022-00440-8 [9] A.D. King, J. Raymond, T. Lanting, R. Harris, A. Zucca, F. Altomare, A.J. Berkley, K. Boothby, S. Ejtemaee, C. Enderud, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, R. Molavi, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, N. Tsai, M. Volkmann, J.D. Whittaker, J. Yao, A.W. Sandvik, M.H. Amin, Quantum critical dynamics in a 5000-qubit programmable spin glass. Nature (2023). 10.1038/s41586-023-05867-2. arxiv:2207.13800 [cond-mat, physics:quant-ph] [10] A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N. Mohseni, P.L. McMahon, T. Byrnes, Ising machines as hardware solvers of combinatorial optimization problems. Nature Reviews Physics 4, 363–379 (2022). 10.1038/s42254-022-00440-8 [9] A.D. King, J. Raymond, T. Lanting, R. Harris, A. Zucca, F. Altomare, A.J. Berkley, K. Boothby, S. Ejtemaee, C. Enderud, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, R. Molavi, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, N. Tsai, M. Volkmann, J.D. Whittaker, J. Yao, A.W. Sandvik, M.H. Amin, Quantum critical dynamics in a 5000-qubit programmable spin glass. Nature (2023). 10.1038/s41586-023-05867-2. arxiv:2207.13800 [cond-mat, physics:quant-ph] [10] A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.D. King, J. Raymond, T. Lanting, R. Harris, A. Zucca, F. Altomare, A.J. Berkley, K. Boothby, S. Ejtemaee, C. Enderud, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, R. Molavi, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, N. Tsai, M. Volkmann, J.D. Whittaker, J. Yao, A.W. Sandvik, M.H. Amin, Quantum critical dynamics in a 5000-qubit programmable spin glass. Nature (2023). 10.1038/s41586-023-05867-2. arxiv:2207.13800 [cond-mat, physics:quant-ph] [10] A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202
  7. Nature Physics 18(11), 1324–1328 (2022). 10.1038/s41567-022-01741-6 [8] N. Mohseni, P.L. McMahon, T. Byrnes, Ising machines as hardware solvers of combinatorial optimization problems. Nature Reviews Physics 4, 363–379 (2022). 10.1038/s42254-022-00440-8 [9] A.D. King, J. Raymond, T. Lanting, R. Harris, A. Zucca, F. Altomare, A.J. Berkley, K. Boothby, S. Ejtemaee, C. Enderud, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, R. Molavi, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, N. Tsai, M. Volkmann, J.D. Whittaker, J. Yao, A.W. Sandvik, M.H. Amin, Quantum critical dynamics in a 5000-qubit programmable spin glass. Nature (2023). 10.1038/s41586-023-05867-2. arxiv:2207.13800 [cond-mat, physics:quant-ph] [10] A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N. Mohseni, P.L. McMahon, T. Byrnes, Ising machines as hardware solvers of combinatorial optimization problems. Nature Reviews Physics 4, 363–379 (2022). 10.1038/s42254-022-00440-8 [9] A.D. King, J. Raymond, T. Lanting, R. Harris, A. Zucca, F. Altomare, A.J. Berkley, K. Boothby, S. Ejtemaee, C. Enderud, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, R. Molavi, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, N. Tsai, M. Volkmann, J.D. Whittaker, J. Yao, A.W. Sandvik, M.H. Amin, Quantum critical dynamics in a 5000-qubit programmable spin glass. Nature (2023). 10.1038/s41586-023-05867-2. arxiv:2207.13800 [cond-mat, physics:quant-ph] [10] A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.D. King, J. Raymond, T. Lanting, R. Harris, A. Zucca, F. Altomare, A.J. Berkley, K. Boothby, S. Ejtemaee, C. Enderud, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, R. Molavi, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, N. Tsai, M. Volkmann, J.D. Whittaker, J. Yao, A.W. Sandvik, M.H. Amin, Quantum critical dynamics in a 5000-qubit programmable spin glass. Nature (2023). 10.1038/s41586-023-05867-2. arxiv:2207.13800 [cond-mat, physics:quant-ph] [10] A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202
  8. Nature Reviews Physics 4, 363–379 (2022). 10.1038/s42254-022-00440-8 [9] A.D. King, J. Raymond, T. Lanting, R. Harris, A. Zucca, F. Altomare, A.J. Berkley, K. Boothby, S. Ejtemaee, C. Enderud, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, R. Molavi, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, N. Tsai, M. Volkmann, J.D. Whittaker, J. Yao, A.W. Sandvik, M.H. Amin, Quantum critical dynamics in a 5000-qubit programmable spin glass. Nature (2023). 10.1038/s41586-023-05867-2. arxiv:2207.13800 [cond-mat, physics:quant-ph] [10] A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.D. King, J. Raymond, T. Lanting, R. Harris, A. Zucca, F. Altomare, A.J. Berkley, K. Boothby, S. Ejtemaee, C. Enderud, E. Hoskinson, S. Huang, E. Ladizinsky, A.J.R. MacDonald, G. Marsden, R. Molavi, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, N. Tsai, M. Volkmann, J.D. Whittaker, J. Yao, A.W. Sandvik, M.H. Amin, Quantum critical dynamics in a 5000-qubit programmable spin glass. Nature (2023). 10.1038/s41586-023-05867-2. arxiv:2207.13800 [cond-mat, physics:quant-ph] [10] A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202
  9. Nature (2023). 10.1038/s41586-023-05867-2. arxiv:2207.13800 [cond-mat, physics:quant-ph] [10] A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202
  10. Scientific Reports 2, 571 (2012). 10.1038/srep00571 [11] R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 R. Harris, Y. Sato, A.J. Berkley, M. Reis, F. Altomare, M.H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M.W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao, Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202
  11. Science 361, 162–165 (2018). 10.1126/science.aat2025 [12] A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Mott, J. Job, J.R. Vlimant, D. Lidar, M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202
  12. Nature 550, 375–379 (2017). 10.1038/nature24047 [13] A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.D. King, C.D. Batista, J. Raymond, T. Lanting, I. Ozfidan, G. Poulin-Lamarre, H. Zhang, M.H. Amin, Quantum Annealing Simulation of Out-of-Equilibrium Magnetization in a Spin-Chain Compound. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202
  13. PRX Quantum 2, 030317 (2021). 10.1103/PRXQuantum.2.030317 [14] S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Abel, M. Spannowsky, Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202
  14. PRX Quantum 2(1), 010349 (2021). 10.1103/PRXQuantum.2.010349 [15] F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202
  15. F. Barahona, On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General 15(10), 3241 (1982). 10.1088/0305-4470/15/10/028 [16] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202
  16. Science 292(5516), 472–475 (2001). 10.1126/science.1057726 [17] D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 D.A. Battaglia, G.E. Santoro, E. Tosatti, Optimization by quantum annealing: Lessons from hard satisfiability problems. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202
  17. Physical Review E 71, 066707 (2005). 10.1103/PhysRevE.71.066707 [18] A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202
  18. A. Lucas, Ising formulations of many NP problems. Frontiers in Physics 2 (2014) [19] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by Simulated Annealing. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202
  19. Science 220, 671–680 (1983). 10.1126/science.220.4598.671 [20] A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202
  20. Chemical Physics Letters 219, 343–348 (1994). 10.1016/0009-2614(94)00117-0 [21] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202
  21. Physical Review E 58, 5355–5363 (1998). 10.1103/PhysRevE.58.5355 [22] G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Theory of Quantum Annealing of an Ising Spin Glass. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202
  22. Science 295, 2427–2430 (2002). 10.1126/science.1068774 [23] A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Das, B.K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202
  23. Reviews of Modern Physics 80(3), 1061–1081 (2008). 10.1103/RevModPhys.80.1061 [24] S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Morita, H. Nishimori, Mathematical foundation of quantum annealing. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202
  24. Journal of Mathematical Physics 49, 125210 (2008). 10.1063/1.2995837 [25] A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A.P. Young, S. Knysh, V.N. Smelyanskiy, First-Order Phase Transition in the Quantum Adiabatic Algorithm. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202
  25. Physical Review Letters 104, 020502 (2010). 10.1103/PhysRevLett.104.020502 [26] T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 T. Albash, D.A. Lidar, Adiabatic quantum computation. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202
  26. Reviews of Modern Physics 90, 015002 (2018). 10.1103/RevModPhys.90.015002 [27] M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M. Ohkuwa, H. Nishimori, D.A. Lidar, Reverse annealing for the fully connected $p$-spin model. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202
  27. Physical Review A 98(2), 022314 (2018). 10.1103/PhysRevA.98.022314 [28] Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 Y. Yamashiro, M. Ohkuwa, H. Nishimori, D.A. Lidar, Dynamics of reverse annealing for the fully connected $p$-spin model. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202
  28. Physical Review A 100(5), 052321 (2019). 10.1103/PhysRevA.100.052321 [29] P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 P. Hauke, H.G. Katzgraber, W. Lechner, H. Nishimori, W.D. Oliver, Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202
  29. Reports on Progress in Physics 83, 054401 (2020). 10.1088/1361-6633/ab85b8 [30] G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G. Passarelli, K.W. Yip, D.A. Lidar, H. Nishimori, P. Lucignano, Reverse quantum annealing of the $p$-spin model with relaxation. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202
  30. Physical Review A 101(2), 022331 (2020). 10.1103/PhysRevA.101.022331 [31] A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Rajak, S. Suzuki, A. Dutta, B.K. Chakrabarti, Quantum Annealing: An Overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202
  31. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2241), 20210417 (2023). 10.1098/rsta.2021.0417. arxiv:2207.01827 [cond-mat, physics:quant-ph] [32] G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 G.E. Santoro, E. Tosatti, TOPICAL REVIEW: Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202
  32. Journal of Physics A Mathematical General 39, R393–R431 (2006). 10.1088/0305-4470/39/36/R01 [33] S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S.F. Edwards, P.W. Anderson, Theory of spin glasses. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202
  33. Journal of Physics F Metal Physics 5, 965–974 (1975). 10.1088/0305-4608/5/5/017 [34] K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 K. Binder, A.P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202
  34. Reviews of Modern Physics 58, 801–976 (1986). 10.1103/RevModPhys.58.801 [35] A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Crisanti, L. Leuzzi, G. Parisi, T. Rizzo, Complexity in the Sherrington-Kirkpatrick model in the annealed approximation. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202
  35. Physical Review B 68(17), 174401 (2003). 10.1103/PhysRevB.68.174401 [36] A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Cavagna, I. Giardina, G. Parisi, Numerical study of metastable states in Ising spin glasses. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202
  36. Physical Review Letters 92(12), 120603 (2004). 10.1103/PhysRevLett.92.120603. arxiv:cond-mat/0312534 [37] S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, A. Rajak, B.K. Chakrabarti, Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202
  37. Physical Review E 97, 022146 (2018). 10.1103/PhysRevE.97.022146 [38] C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Zener, R.H. Fowler, Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202
  38. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137(833), 696–702 (1932). 10.1098/rspa.1932.0165 [39] N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202
  39. N.A. Sinitsyn, Multiparticle Landau-Zener problem: Application to quantum dots. Physical Review B 66(20), 205303 (2002). 10.1103/PhysRevB.66.205303 [40] M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 M.V. Volkov, V.N. Ostrovsky, Exact results for survival probability in the multistate Landau–Zener model. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202
  40. Journal of Physics B: Atomic, Molecular and Optical Physics 37(20), 4069 (2004). 10.1088/0953-4075/37/20/003 [41] B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202
  41. B. Damski, The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective. Physical Review Letters 95, 035701 (2005). 10.1103/PhysRevLett.95.035701 [42] N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N.A. Sinitsyn, F. Li, Solvable multistate model of Landau-Zener transitions in cavity QED. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202
  42. Physical Review A 93(6), 063859 (2016). 10.1103/PhysRevA.93.063859 [43] A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Perdomo, S.E. Venegas-Andraca, A. Aspuru-Guzik. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202
  43. A study of heuristic guesses for adiabatic quantum computation (2010). 10.48550/arXiv.0807.0354 [44] N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202
  44. N. Chancellor, Modernizing quantum annealing using local searches. New Journal of Physics 19(2), 023024 (2017). 10.1088/1367-2630/aa59c4 [45] C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 C. Cao, J. Xue, N. Shannon, R. Joynt, Speedup of the quantum adiabatic algorithm using delocalization catalysis. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202
  45. Physical Review Research 3(1), 013092 (2021). 10.1103/PhysRevResearch.3.013092 [46] A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 A. Pal, D.A. Huse, Many-body localization phase transition. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202
  46. Physical Review B 82(17), 174411 (2010). 10.1103/PhysRevB.82.174411 [47] I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Many-body delocalization transition and relaxation in a quantum dot. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202
  47. Physical Review B 93(12), 125419 (2016). 10.1103/PhysRevB.93.125419 [48] S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202 S. Mukherjee, S. Nag, A. Garg, Many-body localization-delocalization transition in the quantum Sherrington-Kirkpatrick model. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202
  48. Physical Review B 97(14), 144202 (2018). 10.1103/PhysRevB.97.144202
Citations (3)

Summary

We haven't generated a summary for this paper yet.