Hasse Diagrams for Gapless SPT and SSB Phases with Non-Invertible Symmetries (2403.00905v3)
Abstract: We discuss (1+1)d gapless phases with non-invertible global symmetries, also referred to as categorical symmetries. This includes gapless phases showing properties analogous to gapped symmetry protected topological (SPT) phases, known as gapless SPT (or gSPT) phases; and gapless phases showing properties analogous to gapped spontaneous symmetry broken (SSB) phases, that we refer to as gapless SSB (or gSSB) phases. We fit these gapless phases, along with gapped SPT and SSB phases, into a phase diagram describing possible deformations connecting them. This phase diagram is partially ordered and defines a so-called Hasse diagram. Based on these deformations, we identify gapless phases exhibiting symmetry protected criticality, that we refer to as intrinsically gapless SPT (igSPT) and intrinsically gapless SSB (igSSB) phases. This includes the first examples of igSPT and igSSB phases with non-invertible symmetries. Central to this analysis is the Symmetry Topological Field Theory (SymTFT), where each phase corresponds to a condensable algebra in the Drinfeld center of the symmetry category. On a mathematical note, gSPT phases are classified by functors between fusion categories, generalizing the fact that gapped SPT phases are classified by fiber functors; and gSSB phases are classified by functors from fusion to multi-fusion categories. Finally, our framework can be applied to understand gauging of trivially acting non-invertible symmetries, including possible patterns of decomposition arising due to such gaugings.
- D. Gaiotto and J. Kulp, JHEP 02, 132 (2021), arXiv:2008.05960 [hep-th] .
- A. Chatterjee and X.-G. Wen, Phys. Rev. B 108, 075105 (2023), arXiv:2205.06244 [cond-mat.str-el] .
- R. Wen and A. C. Potter, (2023a), arXiv:2311.00050 [cond-mat.str-el] .
- See the appendices of Chatterjee and Wen (2023); Bhardwaj et al. (2023c) for a discussion of the conditions on condensable and Lagrangian algebras.
- R. Wen and A. C. Potter, Phys. Rev. B 107, 245127 (2023b), arXiv:2208.09001 [cond-mat.str-el] .
- S.-J. Huang and M. Cheng, (2023), arXiv:2310.16878 [cond-mat.str-el] .
- T. Ando, (2024), arXiv:2402.03566 [cond-mat.str-el] .
- S. Schafer-Nameki, Phys. Rept. 1063, 1 (2024), arXiv:2305.18296 [hep-th] .
- S.-H. Shao, (2023), arXiv:2308.00747 [hep-th] .
- We only study finite symmetries in this work, which restricts 𝒮𝒮{\mathcal{S}}caligraphic_S to be a multi-fusion D𝐷Ditalic_D-category. We further restrict our attention only to fusion D𝐷Ditalic_D-categories by disallowing the presence of D𝐷Ditalic_D-form symmetries. We take such a fusion D𝐷Ditalic_D-category to be equipped with a pivotal structure that allows one to consider foldings of topological defects comprising the symmetry.
- We thank Apoorv Tiwari and Sanjay Moudgalya for an insightful discussion on this point.
- Throughout this work we obfuscate the difference between TQFTs and gapped phases for brevity. One should keep in mind that gapped phases are deformation classes of TQFTs.
- R. Thorngren and Y. Wang, (2019), arXiv:1912.02817 [hep-th] .
- L. Bhardwaj and S. Schafer-Nameki, (2023a), arXiv:2305.17159 [hep-th] .
- A. Y. Kitaev, Annals Phys. 303, 2 (2003), arXiv:quant-ph/9707021 .
- A. Mesaros and Y. Ran, Phys. Rev. B 87, 155115 (2013), arXiv:1212.0835 [cond-mat.str-el] .
- M. A. Levin and X.-G. Wen, Phys. Rev. B 71, 045110 (2005), arXiv:cond-mat/0404617 .
- For 𝒮=𝖵𝖾𝖼G𝒮subscript𝖵𝖾𝖼𝐺{\mathcal{S}}=\mathsf{Vec}_{G}caligraphic_S = sansserif_Vec start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT a non-anomalous group symmetry, one can recognize 𝒵(𝒮)𝒵𝒮\mathcal{Z}({\mathcal{S}})caligraphic_Z ( caligraphic_S ) as the category of representations formed by the quantum double D(G)𝐷𝐺D(G)italic_D ( italic_G ) of the group G𝐺Gitalic_G.
- M. Iqbal et al., Nature 626, 505 (2024), arXiv:2305.03766 [quant-ph] .
- Note that gaplessness is a feature of infinite volume. At finite volume, we have a gap in the spectrum.
- The actual existence of such a deformation is still a dynamical property of the systems 𝔗1subscript𝔗1\mathfrak{T}_{1}fraktur_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and 𝔗2subscript𝔗2\mathfrak{T}_{2}fraktur_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT.
- Even though the IR degrees of freedom do not transform faithfully under 𝒮𝒮{\mathcal{S}}caligraphic_S, we assume that 𝒮𝒮{\mathcal{S}}caligraphic_S acts faithfully on the full spectrum (including states at all energies).
- E. Sharpe, (2022), arXiv:2204.09117 [hep-th] .
- E. Sharpe, (2023), arXiv:2312.08438 [hep-th] .
- A. Perez-Lona and E. Sharpe, JHEP 08, 138 (2023), arXiv:2303.16220 [hep-th] .
- E. Sharpe, (2021), arXiv:2108.13423 [hep-th] .
- P. R. S. Gomes, (2023), arXiv:2303.01817 [hep-th] .
- T. D. Brennan and S. Hong, (2023), arXiv:2306.00912 [hep-ph] .
- L. Kong and H. Zheng, JHEP 08, 070 (2022), arXiv:2011.02859 [hep-th] .
- C. Cordova and K. Ohmori, Phys. Rev. X 13, 011034 (2023a), arXiv:2205.06243 [hep-th] .
- I. n. García Etxebarria, Fortsch. Phys. 70, 2200154 (2022), arXiv:2208.07508 [hep-th] .
- S. Chen and Y. Tanizaki, (2022), arXiv:2210.13780 [hep-th] .
- A. Karasik, (2022), arXiv:2211.05802 [hep-th] .
- I. n. García Etxebarria and N. Iqbal, (2022), arXiv:2211.09570 [hep-th] .
- T. D. Décoppet and M. Yu, (2022), arXiv:2211.08436 [math.CT] .
- C. Delcamp and A. Tiwari, (2023), arXiv:2301.01259 [hep-th] .
- Y.-H. Lin and S.-H. Shao, (2023), arXiv:2302.13900 [hep-th] .
- P. Putrov and J. Wang, (2023), arXiv:2302.14862 [hep-th] .
- C. Zhang and C. Córdova, (2023), arXiv:2304.01262 [cond-mat.str-el] .
- K. Inamura and K. Ohmori, (2023), arXiv:2305.05774 [cond-mat.str-el] .
- L. Bhardwaj and S. Schafer-Nameki, (2023b), arXiv:2304.02660 [hep-th] .
- S. D. Pace and X.-G. Wen, (2023), arXiv:2301.05261 [cond-mat.str-el] .
- S. Chen and Y. Tanizaki, (2023), arXiv:2307.00939 [hep-th] .
- C. Cordova and K. Ohmori, (2023b), arXiv:2307.12927 [hep-th] .
- Z. Sun and Y. Zheng, (2023), arXiv:2307.14428 [hep-th] .
- S. D. Pace, (2023), arXiv:2308.05730 [cond-mat.str-el] .
- Y. Nagoya and S. Shimamori, (2023), arXiv:2309.05294 [hep-th] .
- M. Buican and R. Radhakrishnan, (2023), arXiv:2309.15181 [hep-th] .
- X. Yu, (2023), arXiv:2310.15339 [hep-th] .
- W. Cao and Q. Jia, (2023), arXiv:2310.01474 [hep-th] .
- K. Inamura and X.-G. Wen, (2023), arXiv:2310.05790 [cond-mat.str-el] .
- C. Cordova and G. Rizi, (2023), arXiv:2312.17308 [hep-th] .
- O. Sela, (2024), arXiv:2401.05032 [hep-th] .
- T. D. Brennan and Z. Sun, (2024), arXiv:2401.06128 [hep-th] .
- L. Su and M. Zeng, (2024), arXiv:2401.11702 [cond-mat.str-el] .
- R. C. Spieler, (2024), arXiv:2402.14944 [hep-th] .
- F. A. Bais and J. K. Slingerland, Phys. Rev. B 79, 045316 (2009), arXiv:0808.0627 [cond-mat.mes-hall] .