Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximations in Besov Spaces and Jump Detection of Besov Functions with Bounded Variation (2403.00797v2)

Published 23 Feb 2024 in math.FA

Abstract: In this paper, we provide a proof that functions belonging to Besov spaces $B{r}_{q,\infty}(\mathbb{R}N,\mathbb{R}d)$, $q\in [1,\infty)$, $r\in(0,1)$, satisfy the following formula under a certain condition: \begin{equation} \label{eq:main result in abstract} \lim_{{\epsilon}\to 0+}\frac{1}{|\ln{\epsilon}|}\left[u_{\epsilon}\right]q_{W{r,q}(\mathbb{R}N,\mathbb{R}d)}=N\lim_{{\epsilon}\to 0+}\int_{\mathbb{R}N}\frac{1}{{\epsilon}N}\int_{B_{\epsilon}(x)}\frac{|u(x)-u(y)|q}{|x-y|{rq}}dydx. \end{equation} Here, $\left[\cdot\right]{W{r,q}}$ represents the Gagliardo seminorm, and $u{\epsilon}$ denotes the convolution of $u$ with a mollifier $\eta_{(\epsilon)}(x):=\frac{1}{\epsilonN}\eta\left(\frac{x}{\epsilon}\right)$, $\eta\in W{1,1}(\mathbb{R}N),\int_{\mathbb{R}N}\eta(z)dz=1$. Furthermore, we prove that every function $u$ in $BV(\mathbb{R}N,\mathbb{R}d)\cap B{1/p}_{p,\infty}(\mathbb{R}N,\mathbb{R}d),p\in(1,\infty),$ satisfies \begin{multline} \lim_{\epsilon\to 0+}\frac{1}{|\ln{\epsilon}|}\left[u_{\epsilon}\right]q_{W{1/q,q}(\mathbb{R}N,\mathbb{R}d)}=N\lim_{{\epsilon}\to 0+}\int_{\mathbb{R}N}\frac{1}{{\epsilon}N}\int_{B_{\epsilon}(x)}\frac{|u(x)-u(y)|q}{|x-y|}dydx =\left(\int_{S{N-1}}|z_1|~d\mathcal{H}{N-1}(z)\right)\int_{\mathcal{J}_u} \Big|u+(x)-u-(x)\Big|q d\mathcal{H}{N-1}(x), \end{multline} for every $1<q<p$. Here $u+,u-$ are the one-sided approximate limits of $u$ along the jump set $\mathcal{J}_u$.

Summary

We haven't generated a summary for this paper yet.