Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reusable MLOps: Reusable Deployment, Reusable Infrastructure and Hot-Swappable Machine Learning models and services (2403.00787v1)

Published 19 Feb 2024 in cs.SE and cs.CY

Abstract: Although Machine Learning model building has become increasingly accessible due to a plethora of tools, libraries and algorithms being available freely, easy operationalization of these models is still a problem. It requires considerable expertise in data engineering, software development, cloud and DevOps. It also requires planning, agreement, and vision of how the model is going to be used by the business applications once it is in production, how it is going to be continuously trained on fresh incoming data, and how and when a newer model would replace an existing model. This leads to developers and data scientists working in silos and making suboptimal decisions. It also leads to wasted time and effort. We introduce the Acumos AI platform we developed and we demonstrate some unique novel capabilities that the Acumos model runner possesses, that can help solve the above problems. We introduce a new sustainable concept in the field of AI/ML operations - called Reusable MLOps - where we reuse the existing deployment and infrastructure to serve new models by hot-swapping them without tearing down the infrastructure or the microservice, thus achieving reusable deployment and operations for AI/ML models while still having continuously trained models in production.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. A. Reuther, P. Michaleas, M. Jones, V. Gadepally, S. Samsi, and J. Kepner, “Survey and Benchmarking of Machine Learning Accelerators,” in 2019 IEEE High Performance Extreme Computing Conference (HPEC), Sep. 2019, pp. 1–9.
  2. N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin, C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox, and D. H. Yoon, “In-datacenter performance analysis of a tensor processing unit,” in 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA), 2017, pp. 1–12.
  3. D. Panchal, I. Baran, D. Musgrove, and D. Lu, “Mlops: Automatic, zero-touch and reusable machine learning training and serving pipelines,” in 2023 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS), 2023, pp. 175–181.
  4. D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner, V. Chaudhary, M. Young, J.-F. Crespo, and D. Dennison, “Hidden Technical Debt in Machine Learning Systems,” in Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 2, ser. NIPS’15.   Cambridge, MA, USA: MIT Press, 2015, p. 2503–2511.
  5. M. M. John, H. H. Olsson, and J. Bosch, “Towards MLOps: A Framework and Maturity Model,” in 2021 47th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), 2021, pp. 1–8.
  6. S. Mäkinen, H. Skogström, E. Laaksonen, and T. Mikkonen, “Who Needs MLOps: What Data Scientists Seek to Accomplish and How Can MLOps Help?” in 2021 IEEE/ACM 1st Workshop on AI Engineering - Software Engineering for AI (WAIN), 2021, pp. 109–112.
  7. M.-H. Huang, R. Rust, and V. Maksimovic, “The Feeling Economy: Managing in the Next Generation of Artificial Intelligence (AI),” California Management Review, vol. 61, no. 4, pp. 43–65, 2019. [Online]. Available: https://doi.org/10.1177/0008125619863436
  8. K. Shahriari and M. Shahriari, “IEEE standard review — Ethically aligned design: A vision for prioritizing human wellbeing with artificial intelligence and autonomous systems,” in 2017 IEEE Canada International Humanitarian Technology Conference (IHTC), 2017, pp. 197–201.
  9. U. Gasser and V. A. Almeida, “A Layered Model for AI Governance,” IEEE Internet Computing, vol. 21, no. 6, pp. 58–62, 2017.
  10. D. Panchal, D. Musgrove, I. Baran, and D. Lu, “Sharing, licensing, buying, selling and operationalizing ml models: A deep learning based co-operative and co-ordinated security usecase,” in 2023 33rd International Telecommunication Networks and Applications Conference, 2023, pp. 118–123.
  11. AT&T and Linux Foundation, “Making Artificial Intelligence Accessible To Everyone,” https://www.acumos.org/.
  12. S. Zhao, M. Talasila, G. Jacobson, C. Borcea, S. A. Aftab, and J. F. Murray, “Packaging and sharing machine learning models via the acumos ai open platform,” in 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA).   IEEE, 2018, pp. 841–846.
  13. The Acumos Project, “Federation,” https://docs.acumos.org/en/athena/AcumosUser/portal-admin/federation.html.
  14. ——, “License Usage Manager (LUM) - Overview,” https://docs.acumos.org/en/elpis/submodules/license-usage-manager/docs/overview.html.
  15. D. Panchal, D. Musgrove, D. H. Lu, and I. Baran, “A CO-OPERATIVE AND CO-ORDINATED APPROACH TO SOLVE PROBLEMS REQUIRING ARTIFICIAL INTELLIGENCE/MACHINE LEARNING,” U.S. Patent 18/471 048, Sep. 20, 2023, Unpublished.
  16. The Acumos Project, “Generic Model Runner Developer Guide,” https://docs.acumos.org/en/latest/submodules/generic-model-runner/docs/developer-guide.html.
  17. ——, “Design Studio,” https://docs.acumos.org/en/clio/submodules/design-studio/docs/.
  18. D. Panchal, I. Baran, D. Musgrove, and D. Lu, “MLOps: Creating powerful AI pipelines by stitching together heterogeneous Machine Learning models,” 2023, (in Press).
  19. Acumos and AI4EU, “AI4EU Experiments,” https://aiexp.ai4europe.eu/#/home.
  20. The Acumos Project, “Acumos Java Client User Guide,” https://docs.acumos.org/en/boreas/submodules/acumos-java-client/docs/onboarding-java-guide.html.
  21. D. Panchal, I. Baran, D. Musgrove, and D. Lu, “From models to microservices: Easily operationalizing machine learning models,” in 2023 International Conference on Computer and Applications (ICCA), 2023, pp. 1–5.
  22. Google, “Protocol buffers,” https://developers.google.com/protocol-buffers.
  23. B. Shariati, P. Safari, G. Bergk, F. I. Oertel, and J. K. Fischer, “Inter-operator machine learning model trading over acumos ai federated marketplace,” in 2021 Optical Fiber Communications Conference and Exhibition (OFC).   IEEE, 2021, pp. 1–3.
Citations (6)

Summary

We haven't generated a summary for this paper yet.