Constraints on anomalous Higgs boson couplings from its production and decay using the WW channel in proton-proton collisions at $\sqrt{s}$ = 13 TeV (2403.00657v2)
Abstract: A study of the anomalous couplings of the Higgs boson to vector bosons, including $CP$-violation effects, has been conducted using its production and decay in the WW channel. This analysis is performed on proton-proton collision data collected with the CMS detector at the CERN LHC during 2016-2018 at a center-of-mass energy of 13 TeV, and corresponds to an integrated luminosity of 138 fb${-1}$. The different-flavor dilepton (e$\mu$) final state is analyzed, with dedicated categories targeting gluon fusion, electroweak vector boson fusion, and associated production with a W or Z boson. Kinematic information from associated jets is combined using matrix element techniques to increase the sensitivity to anomalous effects at the production vertex. A simultaneous measurement of four Higgs boson couplings to electroweak vector bosons is performed in the framework of a standard model effective field theory. All measurements are consistent with the expectations for the standard model Higgs boson and constraints are set on the fractional contribution of the anomalous couplings to the Higgs boson production cross section.
- ATLAS Collaboration, “Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC”, Phys. Lett. B 716 (2012) 1, 10.1016/j.physletb.2012.08.020, arXiv:1207.7214.
- CMS Collaboration, “Observation of a new boson at a mass of 125\GeV with the CMS experiment at the LHC”, Phys. Lett. B 716 (2012) 30, 10.1016/j.physletb.2012.08.021, arXiv:1207.7235.
- CMS Collaboration, “Observation of a new boson with mass near 125\GeV in \Pp\Pp collisions at s=7𝑠7\sqrt{s}=7square-root start_ARG italic_s end_ARG = 7 and 8\TeV”, JHEP 06 (2013) 081, 10.1007/JHEP06(2013)081, arXiv:1303.4571.
- CMS Collaboration, “On the mass and spin-parity of the Higgs boson candidate via its decays to \PZ\PZ\PZ boson pairs”, Phys. Rev. Lett. 110 (2013) 081803, 10.1103/PhysRevLett.110.081803, arXiv:1212.6639.
- CMS Collaboration, “Measurement of the properties of a Higgs boson in the four-lepton final state”, Phys. Rev. D 89 (2014) 092007, 10.1103/PhysRevD.89.092007, arXiv:1312.5353.
- CMS Collaboration, “Constraints on the spin-parity and anomalous HVV couplings of the Higgs boson in proton collisions at 7 and 8 TeV”, Phys. Rev. D 92 (2015) 012004, 10.1103/PhysRevD.92.012004, arXiv:1411.3441.
- CMS Collaboration, “Limits on the Higgs boson lifetime and width from its decay to four charged leptons”, Phys. Rev. D 92 (2015) 072010, 10.1103/PhysRevD.92.072010, arXiv:1507.06656.
- CMS Collaboration, “Combined search for anomalous pseudoscalar HVV couplings in VH production and \PH→\PV\PV→\PH\PV\PV\PH\to\PV\PV→ decay”, Phys. Lett. B 759 (2016) 672, 10.1016/j.physletb.2016.06.004, arXiv:1602.04305.
- CMS Collaboration, “Constraints on anomalous Higgs boson couplings using production and decay information in the four-lepton final state”, Phys. Lett. B 775 (2017) 1, 10.1016/j.physletb.2017.10.021, arXiv:1707.00541.
- CMS Collaboration, “Measurements of the Higgs boson width and anomalous HVV couplings from on-shell and off-shell production in the four-lepton final state”, Phys. Rev. D 99 (2019) 112003, 10.1103/PhysRevD.99.112003, arXiv:1901.00174.
- CMS Collaboration, “Constraints on anomalous \PH\PV\PV\PH\PV\PV\PH\PV\PV couplings from the production of Higgs bosons decaying to τ𝜏\tauitalic_τ lepton pairs”, Phys. Rev. D 100 (2019) 112002, 10.1103/PhysRevD.100.112002, arXiv:1903.06973.
- ATLAS Collaboration, “Evidence for the spin-0 nature of the Higgs boson using ATLAS data”, Phys. Lett. B 726 (2013) 120, 10.1016/j.physletb.2013.08.026, arXiv:1307.1432.
- ATLAS Collaboration, “Study of the spin and parity of the Higgs boson in diboson decays with the ATLAS detector”, Eur. Phys. J. C 75 (2015) 476, 10.1140/epjc/s10052-015-3685-1, arXiv:1506.05669.
- ATLAS Collaboration, “Test of CP𝐶𝑃CPitalic_C italic_P invariance in vector-boson fusion production of the Higgs boson using the Optimal Observable method in the ditau decay channel with the ATLAS detector”, Eur. Phys. J. C 76 (2016) 658, 10.1140/epjc/s10052-016-4499-5, arXiv:1602.04516.
- ATLAS Collaboration, “Measurement of inclusive and differential cross sections in the \PH→\PZ\PZ*→4ℓ→\PH\PZsuperscript\PZ→4ℓ\PH\rightarrow\PZ\PZ^{*}\rightarrow 4\ell→ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT → 4 roman_ℓ decay channel in \Pp\Pp\Pp\Pp\Pp\Pp collisions at s=13\TeV𝑠13\TeV\sqrt{s}=13{\TeV}square-root start_ARG italic_s end_ARG = 13 with the ATLAS detector”, JHEP 10 (2017) 132, 10.1007/JHEP10(2017)132, arXiv:1708.02810.
- ATLAS Collaboration, “Measurement of the Higgs boson coupling properties in the \PH→\PZ\PZ*→4ℓ→\PH\PZsuperscript\PZ→4ℓ\PH\rightarrow\PZ\PZ^{*}\rightarrow 4\ell→ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT → 4 roman_ℓ decay channel at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector”, JHEP 03 (2018) 095, 10.1007/JHEP03(2018)095, arXiv:1712.02304.
- ATLAS Collaboration, “Measurements of Higgs boson properties in the diphoton decay channel with 36 fb−11{}^{-1}start_FLOATSUPERSCRIPT - 1 end_FLOATSUPERSCRIPT of \Pp\Pp\Pp\Pp\Pp\Pp collision data at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector”, Phys. Rev. D 98 (2018) 052005, 10.1103/PhysRevD.98.052005, arXiv:1802.04146.
- ATLAS Collaboration, “Test of CP𝐶𝑃CPitalic_C italic_P invariance in vector-boson fusion production of the Higgs boson in the H→ττ→H𝜏𝜏\mathrm{H}\rightarrow\tau\tauroman_H → italic_τ italic_τ channel in proton−--proton collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector”, Phys. Lett. B 805 (2020) 135426, 10.1016/j.physletb.2020.135426, arXiv:2002.05315.
- LHC Higgs Cross Section Working Group, “Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector”, CERN Report CERN-2017-002-M, 2016. 10.23731/CYRM-2017-002, arXiv:1610.07922.
- Y. Gao et al., “Spin determination of single-produced resonances at hadron colliders”, Phys. Rev. D 81 (2010) 075022, 10.1103/PhysRevD.81.075022, arXiv:1001.3396.
- S. Bolognesi et al., “On the spin and parity of a single-produced resonance at the LHC”, Phys. Rev. D 86 (2012) 095031, 10.1103/PhysRevD.86.095031, arXiv:1208.4018.
- I. Anderson et al., “Constraining anomalous HVV interactions at proton and lepton colliders”, Phys. Rev. D 89 (2014) 035007, 10.1103/PhysRevD.89.035007, arXiv:1309.4819.
- A. V. Gritsan, R. Röntsch, M. Schulze, and M. Xiao, “Constraining anomalous Higgs boson couplings to the heavy flavor fermions using matrix element techniques”, Phys. Rev. D 94 (2016) 055023, 10.1103/PhysRevD.94.055023, arXiv:1606.03107.
- A. V. Gritsan et al., “New features in the JHU generator framework: constraining Higgs boson properties from on-shell and off-shell production”, Phys. Rev. D 102 (2020) 056022, 10.1103/PhysRevD.102.056022, arXiv:2002.09888.
- CMS Collaboration, “Measurements of the Higgs boson production cross section and couplings in the W boson pair decay channel in proton-proton collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV”, Eur. Phys. J. C 83 (2023) 667, 10.1140/epjc/s10052-023-11632-6, arXiv:2206.09466.
- LHC Higgs Cross Section Working Group, “Handbook of LHC Higgs cross sections: 3. Higgs Properties: Report of the LHC Higgs Cross Section Working Group”, CERN Report CERN-2013-004, 2013. 10.5170/CERN-2013-004, arXiv:1307.1347.
- CMS Collaboration, “Measurements of \ttbar\PH\ttbar\PH\ttbar{}\PH production and the CP𝐶𝑃CPitalic_C italic_P structure of the Yukawa interaction between the Higgs boson and top quark in the diphoton decay channel”, Phys. Rev. Lett. 125 (2020) 061801, 10.1103/PhysRevLett.125.061801, arXiv:2003.10866.
- CMS Collaboration, “Constraints on anomalous Higgs boson couplings to vector bosons and fermions in its production and decay using the four-lepton final state”, Phys. Rev. D 104 (2021) 052004, 10.1103/physrevd.104.052004, arXiv:2104.12152.
- HEPData record for this analysis, 2024. x/hepdata.x.
- B. Grzadkowski, M. Iskrzyński, M. Misiak, and J. Rosiek, “Dimension-six terms in the standard model lagrangian”, JHEP 10 (2010) 085, 10.1007/jhep10(2010)085, arXiv:1008.4884.
- J. Davis et al., “Constraining anomalous Higgs boson couplings to virtual photons”, Phys. Rev. D 105 (2022) 096027, 10.1103/PhysRevD.105.096027, arXiv:2109.13363.
- A. V. Gritsan et al., “New features in the JHU generator framework: Constraining Higgs boson properties from on-shell and off-shell production”, Phys. Rev. D 102 (2020) 10.1103/physrevd.102.056022.
- CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004, 10.1088/1748-0221/3/08/S08004.
- CMS Collaboration, “Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at s=8𝑠8\sqrt{s}=8square-root start_ARG italic_s end_ARG = 8\TeV”, JINST 10 (2015) P06005, 10.1088/1748-0221/10/06/P06005, arXiv:1502.02701.
- CMS Collaboration, “Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV”, JINST 13 (2018) P06015, 10.1088/1748-0221/13/06/P06015, arXiv:1804.04528.
- CMS Collaboration, “Performance of photon reconstruction and identification with the CMS detector in proton-proton collisions at sqrt(s) = 8 TeV”, JINST 10 (2015) P08010, 10.1088/1748-0221/10/08/P08010, arXiv:1502.02702.
- CMS Collaboration, “Description and performance of track and primary-vertex reconstruction with the CMS tracker”, JINST 9 (2014) P10009, 10.1088/1748-0221/9/10/P10009, arXiv:1405.6569.
- CMS Collaboration, “Particle-flow reconstruction and global event description with the CMS detector”, JINST 12 (2017) P10003, 10.1088/1748-0221/12/10/P10003, arXiv:1706.04965.
- CMS Collaboration, “Performance of reconstruction and identification of τ𝜏\tauitalic_τ leptons decaying to hadrons and ντsubscript𝜈𝜏\nu_{\tau}italic_ν start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT in pp collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV”, JINST 13 (2018) P10005, 10.1088/1748-0221/13/10/P10005, arXiv:1809.02816.
- CMS Collaboration, “Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV”, JINST 12 (2017) P02014, 10.1088/1748-0221/12/02/P02014, arXiv:1607.03663.
- CMS Collaboration, “Performance of missing transverse momentum reconstruction in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV using the CMS detector”, JINST 14 (2019) P07004, 10.1088/1748-0221/14/07/P07004, arXiv:1903.06078.
- CMS Collaboration, “Performance of the CMS Level-1 trigger in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, JINST 15 (2020) P10017, 10.1088/1748-0221/15/10/P10017, arXiv:2006.10165.
- CMS Collaboration, “The CMS trigger system”, JINST 12 (2017) P01020, 10.1088/1748-0221/12/01/P01020, arXiv:1609.02366.
- CMS Collaboration, “Precision luminosity measurement in proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV in 2015 and 2016 at CMS”, Eur. Phys. J. C 800 (2021) 81, 10.1140/epjc/s10052-021-09538-2, arXiv:2104.01927.
- CMS Collaboration, “CMS luminosity measurement for the 2017 data-taking period at s=13\TeV𝑠13\TeV\sqrt{s}=13\TeVsquare-root start_ARG italic_s end_ARG = 13”, CMS Physics Analysis Summary CMS-PAS-LUM-17-004, 2017.
- CMS Collaboration, “CMS luminosity measurement for the 2018 data-taking period at s=13\TeV𝑠13\TeV\sqrt{s}=13\TeVsquare-root start_ARG italic_s end_ARG = 13”, CMS Physics Analysis Summary CMS-PAS-LUM-18-002, 2019.
- NNPDF Collaboration, “Parton distributions with QED corrections”, Nucl. Phys. B 877 (2013) 290, 10.1016/j.nuclphysb.2013.10.010, arXiv:1308.0598.
- NNPDF Collaboration, “Unbiased global determination of parton distributions and their uncertainties at NNLO and at LO”, Nucl. Phys. B 855 (2012) 153, 10.1016/j.nuclphysb.2011.09.024, arXiv:1107.2652.
- NNPDF Collaboration, “Parton distributions from high-precision collider data”, Eur. Phys. J. C 77 (2017) 663, 10.1140/epjc/s10052-017-5199-5, arXiv:1706.00428.
- CMS Collaboration, “Event generator tunes obtained from underlying event and multiparton scattering measurements”, Eur. Phys. J. C 76 (2016) 155, 10.1140/epjc/s10052-016-3988-x, arXiv:1512.00815.
- CMS Collaboration, “Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements”, Eur. Phys. J. C 80 (2020) 4, 10.1140/epjc/s10052-019-7499-4, arXiv:1903.12179.
- T. Sjöstrand et al., “An introduction to PYTHIA 8.2”, Comput. Phys. Commun. 191 (2015) 159, 10.1016/j.cpc.2015.01.024, arXiv:1410.3012.
- P. Nason, “A new method for combining NLO QCD with shower Monte Carlo algorithms”, JHEP 11 (2004) 040, 10.1088/1126-6708/2004/11/040, arXiv:hep-ph/0409146.
- S. Frixione, P. Nason, and C. Oleari, “Matching NLO QCD computations with parton shower simulations: the POWHEG method”, JHEP 11 (2007) 070, 10.1088/1126-6708/2007/11/070, arXiv:0709.2092.
- S. Alioli, P. Nason, C. Oleari, and E. Re, “A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX”, JHEP 06 (2010) 043, 10.1007/JHEP06(2010)043, arXiv:1002.2581.
- E. Bagnaschi, G. Degrassi, P. Slavich, and A. Vicini, “Higgs production via gluon fusion in the POWHEG approach in the SM and in the MSSM”, JHEP 02 (2012) 088, 10.1007/JHEP02(2012)088, arXiv:1111.2854.
- P. Nason and C. Oleari, “NLO Higgs boson production via vector-boson fusion matched with shower in POWHEG”, JHEP 02 (2010) 037, 10.1007/JHEP02(2010)037, arXiv:0911.5299.
- G. Luisoni, P. Nason, C. Oleari, and F. Tramontano, “HW±superscriptHWplus-or-minus\mathrm{HW^{\pm}}roman_HW start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT/HZ + 0 and 1 jet at NLO with the POWHEG BOX interfaced to GoSam and their merging within MiNLO”, JHEP 10 (2013) 083, 10.1007/JHEP10(2013)083, arXiv:1306.2542.
- H. B. Hartanto, B. Jager, L. Reina, and D. Wackeroth, “Higgs boson production in association with top quarks in the POWHEG BOX”, Phys. Rev. D 91 (2015) 094003, 10.1103/PhysRevD.91.094003, arXiv:1501.04498.
- K. Hamilton, P. Nason, E. Re, and G. Zanderighi, “NNLOPS simulation of Higgs boson production”, JHEP 10 (2013) 222, 10.1007/JHEP10(2013)222, arXiv:1309.0017.
- K. Hamilton, P. Nason, and G. Zanderighi, “Finite quark-mass effects in the NNLOPS POWHEG+MiNLO Higgs generator”, JHEP 05 (2015) 140, 10.1007/JHEP05(2015)140, arXiv:1501.04637.
- N. Berger et al., “Simplified template cross sections — stage 1.1”, 2019. arXiv:1906.02754.
- R. Frederix and K. Hamilton, “Extending the MINLO method”, JHEP 05 (2016) 042, 10.1007/JHEP05(2016)042, arXiv:1512.02663.
- J. Alwall et al., “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations”, JHEP 07 (2014) 079, 10.1007/JHEP07(2014)079, arXiv:1405.0301.
- CMS Collaboration, “A measurement of the Higgs boson mass in the diphoton decay channel”, Phys. Lett. B 805 (2020) 135425, 10.1016/j.physletb.2020.135425, arXiv:2002.06398.
- P. Nason, C. Oleari, M. Rocco, and M. Zaro, “An interface between the POWHEG BOX and MadGraph5_aMC@NLO”, Eur. Phys. J. C 80 (2020) 10, 10.1140/epjc/s10052-020-08559-7, arXiv:2008.06364.
- P. Nason and G. Zanderighi, “W+W−superscript𝑊superscript𝑊W^{+}W^{-}italic_W start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_W start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT , WZ𝑊𝑍WZitalic_W italic_Z and ZZ𝑍𝑍ZZitalic_Z italic_Z production in the POWHEG-BOX-V2”, Eur. Phys. J. C 74 (2014) 2702, 10.1140/epjc/s10052-013-2702-5, arXiv:1311.1365.
- P. Meade, H. Ramani, and M. Zeng, “Transverse momentum resummation effects in \PW+\PW−superscript\PWsuperscript\PW\PW^{+}{}\PW^{-}start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT measurements”, Phys. Rev. D 90 (2014) 114006, 10.1103/PhysRevD.90.114006, arXiv:1407.4481.
- P. Jaiswal and T. Okui, “Explanation of the \PW\PW\PW\PW\PW{}\PW excess at the LHC by jet-veto resummation”, Phys. Rev. D 90 (2014) 073009, 10.1103/PhysRevD.90.073009, arXiv:1407.4537.
- J. M. Campbell and R. K. Ellis, “An update on vector boson pair production at hadron colliders”, Phys. Rev. D 60 (1999) 113006, 10.1103/PhysRevD.60.113006, arXiv:hep-ph/9905386.
- J. M. Campbell, R. K. Ellis, and C. Williams, “Vector boson pair production at the LHC”, JHEP 07 (2011) 018, 10.1007/JHEP07(2011)018, arXiv:1105.0020.
- J. M. Campbell, R. K. Ellis, and W. T. Giele, “A multi-threaded version of MCFM”, Eur. Phys. J. C 75 (2015) 246, 10.1140/epjc/s10052-015-3461-2, arXiv:1503.06182.
- F. Caola et al., “QCD corrections to vector boson pair production in gluon fusion including interference effects with off-shell Higgs at the LHC”, JHEP 07 (2016) 087, 10.1007/JHEP07(2016)087, arXiv:1605.04610.
- Alwall, J. and others, “Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions”, Eur. Phys. J. C 53 (2008) 473, 10.1140/epjc/s10052-007-0490-5, arXiv:0706.2569.
- S. Frixione, P. Nason, and G. Ridolfi, “A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction”, JHEP 09 (2007) 126, 10.1088/1126-6708/2007/09/126, arXiv:0707.3088.
- S. Alioli, P. Nason, C. Oleari, and E. Re, “NLO single-top production matched with shower in POWHEG: s𝑠sitalic_s- and t𝑡titalic_t-channel contributions”, JHEP 09 (2009) 111, 10.1088/1126-6708/2009/09/111, arXiv:0907.4076. [Erratum: \DOI10.1007/JHEP02(2010)011].
- E. Re, “Single-top Wt-channel production matched with parton showers using the POWHEG method”, Eur. Phys. J. C 71 (2011) 1547, 10.1140/epjc/s10052-011-1547-z, arXiv:1009.2450.
- M. Czakon et al., “Top-pair production at the LHC through NNLO QCD and NLO EW”, JHEP 10 (2017) 186, 10.1007/JHEP10(2017)186, arXiv:1705.04105.
- R. Frederix and S. Frixione, “Merging meets matching in MC@NLO”, JHEP 12 (2012) 061, 10.1007/JHEP12(2012)061, arXiv:1209.6215.
- GEANT4 Collaboration, “\GEANTfour — a simulation toolkit”, Nucl. Instrum. Meth. A 506 (2003) 250, 10.1016/S0168-9002(03)01368-8.
- CMS Collaboration, “Muon identification using multivariate techniques in the CMS experiment in proton-proton collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV”, 2023. arXiv:2310.03844. Submitted to JINST.
- W. Waltenberger, R. Frühwirth, and P. Vanlaer, “Adaptive vertex fitting”, J. Phys. G 34 (2007) N343, 10.1088/0954-3899/34/12/N01.
- CMS Collaboration, “Technical proposal for the Phase-II upgrade of the Compact Muon Solenoid”, CMS Technical Proposal CERN-LHCC-2015-010, CMS-TDR-15-02, 2015.
- CMS Collaboration, “Pileup mitigation at CMS in 13 TeV data”, JINST 15 (2020) P09018, 10.1088/1748-0221/15/09/p09018, arXiv:2003.00503.
- D. Bertolini, P. Harris, M. Low, and N. Tran, “Pileup per particle identification”, JHEP 10 (2014) 059, 10.1007/JHEP10(2014)059, arXiv:1407.6013.
- J. Thaler and K. Van Tilburg, “Identifying boosted objects with N𝑁Nitalic_N-subjettiness”, JHEP 03 (2011) 015, 10.1007/JHEP03(2011)015, arXiv:1011.2268.
- M. Dasgupta, A. Fregoso, S. Marzani, and G. P. Salam, “Towards an understanding of jet substructure”, JHEP 09 (2013) 029, 10.1007/JHEP09(2013)029, arXiv:1307.0007.
- J. M. Butterworth, A. R. Davison, M. Rubin, and G. P. Salam, “Jet substructure as a new Higgs search channel at the LHC”, Phys. Rev. Lett. 100 (2008) 242001, 10.1103/PhysRevLett.100.242001, arXiv:0802.2470.
- A. J. Larkoski, S. Marzani, G. Soyez, and J. Thaler, “Soft Drop”, JHEP 05 (2014) 146, 10.1007/JHEP05(2014)146, arXiv:1402.2657.
- CMS Collaboration, “Identification of heavy-flavour jets with the CMS detector in \Pp\Pp collisions at 13\TeV”, JINST 13 (2018) P05011, 10.1088/1748-0221/13/05/P05011, arXiv:1712.07158.
- CMS Collaboration, “CMS Phase 1 heavy flavour identification performance and developments”, CMS Detector Performance Summary CMS-DP-2020-019, 2017.
- CMS Collaboration, “Measurements of properties of the Higgs boson decaying to a \PW boson pair in \Pp\Pp collisions at s=13\TeV𝑠13\TeV\sqrt{s}=13\TeVsquare-root start_ARG italic_s end_ARG = 13”, Phys. Lett. B 791 (2019) 96, 10.1016/j.physletb.2018.12.073, arXiv:1806.05246.
- CMS Collaboration, “Measurements of inclusive W and Z cross sections in pp collisions at s=7𝑠7\sqrt{s}=7square-root start_ARG italic_s end_ARG = 7 TeV”, JHEP 01 (2011) 080, 10.1007/JHEP01(2011)080, arXiv:1012.2466.
- CMS Collaboration, “An embedding technique to determine ττ𝜏𝜏\tau\tauitalic_τ italic_τ backgrounds in proton-proton collision data”, JINST 14 (2019) P06032, 10.1088/1748-0221/14/06/P06032, arXiv:1903.01216.
- CMS Collaboration, “Identification techniques for highly boosted W bosons that decay into hadrons”, JHEP 12 (2014) 017, 10.1007/JHEP12(2014)017, arXiv:1410.4227.
- R. Barlow and C. Beeston, “Fitting using finite Monte Carlo samples”, Comput. Phys. Commun. 77 (1993) 219, 10.1016/0010-4655(93)90005-W.
- ATLAS Collaboration, “Measurement of the inelastic proton-proton cross section at s=13 TeV𝑠13 TeV\sqrt{s}=13\text{ }\text{ }\mathrm{TeV}square-root start_ARG italic_s end_ARG = 13 roman_TeV with the ATLAS detector at the LHC”, Phys. Rev. Lett. 117 (2016) 182002, 10.1103/PhysRevLett.117.182002, arXiv:1606.02625.
- CMS Collaboration, “Measurement of the inelastic proton-proton cross section at s=13\TeV𝑠13\TeV\sqrt{s}=13\TeVsquare-root start_ARG italic_s end_ARG = 13”, JHEP 07 (2018) 161, 10.1007/JHEP07(2018)161, arXiv:1802.02613.
- G. Passarino, “Higgs CAT”, Eur. Phys. J. C 74 (2014) 2866, 10.1140/epjc/s10052-014-2866-7, arXiv:1312.2397.
- CMS Collaboration, “Measurement of Higgs boson production and properties in the WW decay channel with leptonic final states”, JHEP 01 (2014) 096, 10.1007/JHEP01(2014)096, arXiv:1312.1129.
- The ATLAS Collaboration, The CMS Collaboration, The LHC Higgs Combination Group, “Procedure for the LHC Higgs boson search combination in Summer 2011”, Technical Report ATL-PHYS-PUB 2011-11, CMS NOTE 2011/005, 2011.
- CMS Collaboration, “Combined measurements of Higgs boson couplings in proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV”, Eur. Phys. J. C 79 (2019) 421, 10.1140/epjc/s10052-019-6909-y, arXiv:1809.10733.
- S. S. Wilks, “The large-sample distribution of the likelihood ratio for testing composite hypotheses”, Annals Math. Statist. 9 (1938) 60, 10.1214/aoms/1177732360.
- G. Cowan, K. Cranmer, E. Gross, and O. Vitells, “Asymptotic formulae for likelihood-based tests of new physics”, Eur. Phys. J. C 71 (2011) 1554, 10.1140/epjc/s10052-011-1554-0, arXiv:1007.1727.