Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Optimality of CVOD-based Column Selection (2403.00121v2)

Published 29 Feb 2024 in math.NA, cs.NA, and math.AP

Abstract: While there exists a rich array of matrix column subset selection problem (CSSP) algorithms for use with interpolative and CUR-type decompositions, their use can often become prohibitive as the size of the input matrix increases. In an effort to address these issues, the authors in \cite{emelianenko2024adaptive} developed a general framework that pairs a column-partitioning routine with a column-selection algorithm. Two of the four algorithms presented in that work paired the Centroidal Voronoi Orthogonal Decomposition (\textsf{CVOD}) and an adaptive variant (\textsf{adaptCVOD}) with the Discrete Empirical Interpolation Method (\textsf{DEIM}) \cite{sorensen2016deim}. In this work, we extend this framework and pair the \textsf{CVOD}-type algorithms with any CSSP algorithm that returns linearly independent columns. Our results include detailed error bounds for the solutions provided by these paired algorithms, as well as expressions that explicitly characterize how the quality of the selected column partition affects the resulting CSSP solution.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (11)
  1. Emelianenko, M.; Oldaker IV, G. B. Adaptive Voronoi-based Column Selection Methods for Interpretable Dimensionality Reduction. arXiv preprint arXiv:2402.07325 2024,
  2. Dong, Y.; Martinsson, P.-G. Simpler is Better: A Comparative Study of Randomized Algorithms for Computing the CUR Decomposition. arXiv preprint arXiv:2104.05877 2021,
  3. Boutsidis, C.; Mahoney, M. W.; Drineas, P. An Improved Approximation Algorithm for the Column Subset Selection Problem. Proceedings of the twentieth annual ACM-SIAM symposium on Discrete algorithms. 2009; pp 968–977.
  4. Du, Q.; Gunzburger, M. D. ”Centroidal Voronoi Tessellation Based Proper Orthogonal Decomposition Analysis”; Springer, 2003; pp 137–150.
  5. Shitov, Y. Column Subset Selection is NP-Complete. 2017.
  6. Drineas, P.; Mahoney, M. W.; Muthukrishnan, S. Sampling Algorithms for ℓ2subscriptℓ2\ell_{2}roman_ℓ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT Regression and Applications. Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm. 2006; pp 1127–1136.
  7. Deshpande, A.; Vempala, S. Adaptive Sampling and Fast Low-rank Matrix Approximation. International Workshop on Approximation Algorithms for Combinatorial Optimization. 2006; pp 292–303.
  8. Trefethen, L. N.; Bau, D. Numerical Linear Algebra; Siam, 2022; Vol. 181.
  9. Golub, G.; Van Loan, C. Matrix Computations 4th Edition; Johns Hopkins University Press, 2013.
  10. Okabe, A. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Spatial tessellations: concepts and applications of voronoi diagrams. 2nd ed. By Atsuyuki Okabe…[et al] Chichester; Toronto: John Wiley & Sons 2000,
  11. Fukunaga, K. Introduction to Statistical Pattern Recognition; Elsevier, 2013.

Summary

We haven't generated a summary for this paper yet.