Learning interacting fermionic Hamiltonians at the Heisenberg limit (2403.00069v3)
Abstract: Efficiently learning an unknown Hamiltonian given access to its dynamics is a problem of interest for quantum metrology, many-body physics and machine learning. A fundamental question is whether learning can be performed at the Heisenberg limit, where the Hamiltonian evolution time scales inversely with the error, $\varepsilon$, in the reconstructed parameters. The Heisenberg limit has previously been shown to be achievable for certain classes of qubit and bosonic Hamiltonians. Most recently, a Heisenberg-limited learning algorithm was proposed for a simplified class of fermionic Hubbard Hamiltonians restricted to real hopping amplitudes and zero chemical potential at all sites, along with on-site interactions. In this work, we provide an algorithm to learn a more general class of fermionic Hubbard Hamiltonians at the Heisenberg limit, allowing complex hopping amplitudes and nonzero chemical potentials in addition to the on-site interactions, thereby including several models of physical interest. The required evolution time across all experiments in our protocol is $\mathcal{O}(1/\varepsilon)$ and the number of experiments required to learn all the Hamiltonian parameters is $\mathcal{O}(\text{polylog}(1/\varepsilon))$, independent of system size as long as each fermionic mode interacts with $\mathcal{O}(1)$ other modes. Unlike prior algorithms for bosonic and fermionic Hamiltonians, to obey fermionic parity superselection constraints in our more general setting, our protocol utilizes $\mathcal{O}(N)$ ancillary fermionic modes, where $N$ is the system size. Each experiment involves preparing fermionic Gaussian states, interleaving time evolution with fermionic linear optics unitaries, and performing local occupation number measurements on the fermionic modes. The protocol is robust to a constant amount of state preparation and measurement error.
- Active learning of quantum system Hamiltonians yields query advantage. Physical Review Research, 5(3), July 2023. ISSN 2643-1564. doi: 10.1103/physrevresearch.5.033060. URL http://dx.doi.org/10.1103/PhysRevResearch.5.033060.
- Quantum enhanced estimation of a multidimensional field. Physical Review Letters, 116(3):030801, January 2016. doi: 10.1103/PhysRevLett.116.030801.
- Quantum metrology for a general Hamiltonian parameter. Physical Review A, 90(2), August 2014. ISSN 1094-1622. doi: 10.1103/physreva.90.022117. URL http://dx.doi.org/10.1103/PhysRevA.90.022117.
- How to best sample a periodic probability distribution, or on the accuracy of Hamiltonian finding strategies. Quantum Information Processing, 12:611–623, 2013. doi: 10.1007/s11128-012-0407-6. URL http://dx.doi.org/10.1007/s11128-012-0407-6.
- Characterization of a qubit Hamiltonian using adaptive measurements in a fixed basis. Physical Review A, 84(5), November 2011. ISSN 1094-1622. doi: 10.1103/physreva.84.052315. URL http://dx.doi.org/10.1103/PhysRevA.84.052315.
- Distant clock synchronization using entangled photon pairs. Applied Physics Letters, 85(13):2655–2657, September 2004. ISSN 1077-3118. doi: 10.1063/1.1797561. URL http://dx.doi.org/10.1063/1.1797561.
- Toward Heisenberg-limited spectroscopy with multiparticle entangled states. Science, 304(5676):1476–1478, 2004. doi: 10.1126/science.1097576. URL https://www.science.org/doi/abs/10.1126/science.1097576.
- Quantum methods for clock synchronization: Beating the standard quantum limit without entanglement. Physical Review A, 72(4), October 2005. ISSN 1094-1622. doi: 10.1103/physreva.72.042301. URL http://dx.doi.org/10.1103/PhysRevA.72.042301.
- A quantum rosetta stone for interferometry. Journal of Modern Optics, 49(14–15):2325–2338, November 2002. ISSN 1362-3044. doi: 10.1080/0950034021000011536. URL http://dx.doi.org/10.1080/0950034021000011536.
- Experimental demonstration of a squeezing-enhanced power-recycled michelson interferometer for gravitational wave detection. Physical Review Letters, 88(23), May 2002. ISSN 1079-7114. doi: 10.1103/physrevlett.88.231102. URL http://dx.doi.org/10.1103/PhysRevLett.88.231102.
- Optimal frequency measurements with maximally correlated states. Phys. Rev. A, 54:R4649–R4652, Dec 1996. doi: 10.1103/PhysRevA.54.R4649. URL https://link.aps.org/doi/10.1103/PhysRevA.54.R4649.
- M. J. Holland and K. Burnett. Interferometric detection of optical phase shifts at the Heisenberg limit. Phys. Rev. Lett., 71:1355–1358, Aug 1993. doi: 10.1103/PhysRevLett.71.1355. URL https://link.aps.org/doi/10.1103/PhysRevLett.71.1355.
- Spin squeezing and reduced quantum noise in spectroscopy. Phys. Rev. A, 46:R6797–R6800, Dec 1992. doi: 10.1103/PhysRevA.46.R6797. URL https://link.aps.org/doi/10.1103/PhysRevA.46.R6797.
- Carlton M. Caves. Quantum-mechanical noise in an interferometer. Phys. Rev. D, 23:1693–1708, Apr 1981. doi: 10.1103/PhysRevD.23.1693. URL https://link.aps.org/doi/10.1103/PhysRevD.23.1693.
- Experimental quantum Hamiltonian learning. Nature Physics, 13(6):551–555, March 2017. ISSN 1745-2481. doi: 10.1038/nphys4074. URL http://dx.doi.org/10.1038/nphys4074.
- Determining a local Hamiltonian from a single eigenstate. Quantum, 3:159, July 2019. ISSN 2521-327X. doi: 10.22331/q-2019-07-08-159. URL http://dx.doi.org/10.22331/q-2019-07-08-159.
- Quantum Hamiltonian learning using imperfect quantum resources. Physical Review A, 89(4), April 2014a. ISSN 1094-1622. doi: 10.1103/physreva.89.042314. URL http://dx.doi.org/10.1103/PhysRevA.89.042314.
- Hamiltonian learning and certification using quantum resources. Physical Review Letters, 112(19), May 2014b. ISSN 1079-7114. doi: 10.1103/physrevlett.112.190501. URL http://dx.doi.org/10.1103/PhysRevLett.112.190501.
- Estimation of many-body quantum Hamiltonians via compressive sensing. Phys. Rev. A, 84:012107, Jul 2011. doi: 10.1103/PhysRevA.84.012107. URL https://link.aps.org/doi/10.1103/PhysRevA.84.012107.
- Quantum Hamiltonian identification from measurement time traces. Physical Review Letters, 113(8), August 2014. ISSN 1079-7114. doi: 10.1103/physrevlett.113.080401. URL http://dx.doi.org/10.1103/PhysRevLett.113.080401.
- Scalable bayesian Hamiltonian learning, 2019.
- Hamiltonian tomography via quantum quench. Physical Review Letters, 124(16), April 2020. ISSN 1079-7114. doi: 10.1103/physrevlett.124.160502. URL http://dx.doi.org/10.1103/PhysRevLett.124.160502.
- Optimal short-time measurements for Hamiltonian learning, 2021. URL http://arxiv.org/abs/2108.08824.
- High-accuracy Hamiltonian learning via delocalized quantum state evolutions. Quantum, 7:905, January 2023. ISSN 2521-327X. doi: 10.22331/q-2023-01-26-905. URL http://dx.doi.org/10.22331/q-2023-01-26-905.
- Robust and efficient Hamiltonian learning. Quantum, 7:1045, June 2023. ISSN 2521-327X. doi: 10.22331/q-2023-06-29-1045. URL http://dx.doi.org/10.22331/q-2023-06-29-1045.
- Indirect quantum tomography of quadratic Hamiltonians. New Journal of Physics, 13(1):013019, January 2011. ISSN 1367-2630. doi: 10.1088/1367-2630/13/1/013019. URL http://dx.doi.org/10.1088/1367-2630/13/1/013019.
- Efficient and robust estimation of many-qubit Hamiltonians, 2022. URL http://arxiv.org/abs/2205.09567.
- Sample-efficient learning of interacting quantum systems. Nature Physics, 17(8):931–935, May 2021. ISSN 1745-2481. doi: 10.1038/s41567-021-01232-0. URL http://dx.doi.org/10.1038/s41567-021-01232-0.
- Optimal learning of quantum Hamiltonians from high-temperature Gibbs states, 2023. URL http://arxiv.org/abs/2108.04842.
- Provably efficient variational generative modeling of quantum many-body systems via quantum-probabilistic information geometry, 2022. URL http://arxiv.org/abs/2206.04663.
- Quantum Hamiltonian-based models and the variational quantum thermalizer algorithm, 2019. URL http://arxiv.org/abs/1910.02071.
- Magnetic Hamiltonian parameter estimation using deep learning techniques. Science Advances, 6(39):eabb0872, 2020. doi: 10.1126/sciadv.abb0872. URL https://www.science.org/doi/abs/10.1126/sciadv.abb0872.
- Machine learning magnetic parameters from spin configurations, 2019. URL http://arxiv.org/abs/1908.05829.
- Predicting many properties of a quantum system from very few measurements. Nature Physics, 16(10):1050–1057, June 2020. ISSN 1745-2481. doi: 10.1038/s41567-020-0932-7. URL http://dx.doi.org/10.1038/s41567-020-0932-7.
- Learning many-body Hamiltonians with Heisenberg-limited scaling. Physical Review Letters, 130(20), May 2023. ISSN 1079-7114. doi: 10.1103/physrevlett.130.200403. URL http://dx.doi.org/10.1103/PhysRevLett.130.200403.
- Heisenberg-limited Hamiltonian learning for interacting bosons, 2023. URL http://arxiv.org/abs/2307.04690.
- The advantage of quantum control in many-body Hamiltonian learning, 2023. URL http://arxiv.org/abs/2304.07172.
- Michael A. Nielsen. Quantum computation and quantum information. Cambridge University Press, Cambridge ; New York, 2000. ISBN 0521632358.
- Hamiltonian learning for quantum error correction. Physical Review Research, 1(3), November 2019. ISSN 2643-1564. doi: 10.1103/physrevresearch.1.033092. URL http://dx.doi.org/10.1103/PhysRevResearch.1.033092.
- Quantum bootstrapping via compressed quantum Hamiltonian learning. New Journal of Physics, 17(2):022005, February 2015. ISSN 1367-2630. doi: 10.1088/1367-2630/17/2/022005. URL http://dx.doi.org/10.1088/1367-2630/17/2/022005.
- Robustly learning the Hamiltonian dynamics of a superconducting quantum processor, 2024. URL http://arxiv.orb/abs/2108.08319.
- Practical characterization of quantum devices without tomography. Physical Review Letters, 107(21), November 2011. ISSN 1079-7114. doi: 10.1103/physrevlett.107.210404. URL http://dx.doi.org/10.1103/PhysRevLett.107.210404.
- Robust calibration of a universal single-qubit gate set via robust phase estimation. Physical Review A, 92(6), December 2015. ISSN 1094-1622. doi: 10.1103/physreva.92.062315. URL http://dx.doi.org/10.1103/PhysRevA.92.062315.
- Consistency testing for robust phase estimation. Physical Review A, 103(4), April 2021. ISSN 2469-9934. doi: 10.1103/physreva.103.042609. URL http://dx.doi.org/10.1103/PhysRevA.103.042609.
- Achieving Heisenberg scaling with maximally entangled states: An analytic upper bound for the attainable root-mean-square error. Physical Review A, 102(4), October 2020. ISSN 2469-9934. doi: 10.1103/physreva.102.042613. URL http://dx.doi.org/10.1103/PhysRevA.102.042613.
- Quantum Hamiltonian learning for the Fermi-Hubbard model, 2023a. URL http://arxiv.org/abs/2312.17390.
- Realization of density-dependent peierls phases to engineer quantized gauge fields coupled to ultracold matter. Nature Physics, 15(11):1161–1167, August 2019. ISSN 1745-2481. doi: 10.1038/s41567-019-0615-4. URL http://dx.doi.org/10.1038/s41567-019-0615-4.
- Neural-network quantum states for a two-leg bose-hubbard ladder under magnetic flux. Physical Review A, 106(6), December 2022. ISSN 2469-9934. doi: 10.1103/physreva.106.063320. URL http://dx.doi.org/10.1103/PhysRevA.106.063320.
- Gerald D Mahan. Many-particle physics. Physics of solids and liquids. Kluwer Academic/Plenum Publishers, New York, 3rd ed. edition, 2000. ISBN 0306463385.
- Anderson-hubbard model in infinite dimensions. Physical Review B, 51(16):10411, 1995. URL https://doi.org/10.1103/PhysRevB.51.10411.
- Anderson localization effects on the doped hubbard model. Physical Review B, 103(24):245134, 2021. URL https://doi.org/10.1103/PhysRevB.103.245134.
- Quantum-gas microscope for fermionic atoms. Physical Review Letters, 114(19), May 2015. ISSN 1079-7114. doi: 10.1103/physrevlett.114.193001. URL http://dx.doi.org/10.1103/PhysRevLett.114.193001.
- Single-atom imaging of fermions in a quantum-gas microscope. Nature Physics, 11(9):738–742, July 2015. ISSN 1745-2481. doi: 10.1038/nphys3403. URL http://dx.doi.org/10.1038/nphys3403.
- Spin-imbalance in a 2d fermi-hubbard system. Science, 357(6358):1385–1388, September 2017. ISSN 1095-9203. doi: 10.1126/science.aam7838. URL http://dx.doi.org/10.1126/science.aam7838.
- Doublon-hole correlations and fluctuation thermometry in a fermi-hubbard gas. Physical Review Letters, 125(11), September 2020. ISSN 1079-7114. doi: 10.1103/physrevlett.125.113601. URL http://dx.doi.org/10.1103/PhysRevLett.125.113601.
- Robust bilayer charge pumping for spin- and density-resolved quantum gas microscopy. Physical Review Letters, 125(1), July 2020. ISSN 1079-7114. doi: 10.1103/physrevlett.125.010403. URL http://dx.doi.org/10.1103/PhysRevLett.125.010403.
- Schrieffer-wolff transformations for experiments: Dynamically suppressing virtual doublon-hole excitations in a fermi-hubbard simulator. Physical Review A, 106(1), July 2022. ISSN 2469-9934. doi: 10.1103/physreva.106.012428. URL http://dx.doi.org/10.1103/PhysRevA.106.012428.
- Frustration- and doping-induced magnetism in a fermi–hubbard simulator. Nature, 620(7976):971–976, August 2023. ISSN 1476-4687. doi: 10.1038/s41586-023-06280-5. URL http://dx.doi.org/10.1038/s41586-023-06280-5.
- Observation of nagaoka polarons in a fermi-hubbard quantum simulator, 2023.
- Patrik Fazekas. Lecture Notes on Electron Correlation and Magnetism, volume 5. World Scientific, 1999.
- On low-depth algorithms for quantum phase estimation. Quantum, 7:1165, November 2023b. ISSN 2521-327X. doi: 10.22331/q-2023-11-06-1165. URL http://dx.doi.org/10.22331/q-2023-11-06-1165.
- Sergey Bravyi. Lagrangian representation for fermionic linear optics, 2004. URL http://arxiv.org/abs/quant-ph/0404180.
- Quantum operations in an information theory for fermions. Physical Review A, 104(3), September 2021. ISSN 2469-9934. doi: 10.1103/physreva.104.032411. URL http://dx.doi.org/10.1103/PhysRevA.104.032411.
- Earl Campbell. Random compiler for fast Hamiltonian simulation. Physical Review Letters, 123(7), August 2019. ISSN 1079-7114. doi: 10.1103/physrevlett.123.070503. URL http://dx.doi.org/10.1103/PhysRevLett.123.070503.
- Mean-field phase diagram of the bose-fermi hubbard model. Physical Review B, 89(9), March 2014. ISSN 1550-235X. doi: 10.1103/physrevb.89.094502. URL http://dx.doi.org/10.1103/PhysRevB.89.094502.
- Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proceedings of the IEEE, 51(1):89–109, 1963. ISSN 0018-9219.
- Probability and random processes. Oxford University Press, Oxford; New York, 3rd ed. edition, 2001. ISBN 0198572239.