Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Interpreting Multi-Objective Feature Associations (2403.00017v1)

Published 28 Feb 2024 in cs.LG and cs.AI

Abstract: Understanding how multiple features are associated and contribute to a specific objective is as important as understanding how each feature contributes to a particular outcome. Interpretability of a single feature in a prediction may be handled in multiple ways; however, in a multi-objective prediction, it is difficult to obtain interpretability of a combination of feature values. To address this issue, we propose an objective specific feature interaction design using multi-labels to find the optimal combination of features in agricultural settings. One of the novel aspects of this design is the identification of a method that integrates feature explanations with global sensitivity analysis in order to ensure combinatorial optimization in multi-objective settings. We have demonstrated in our preliminary experiments that an approximate combination of feature values can be found to achieve the desired outcome using two agricultural datasets: one with pre-harvest poultry farm practices for multi-drug resistance presence, and one with post-harvest poultry farm practices for food-borne pathogens. In our combinatorial optimization approach, all three pathogens are taken into consideration simultaneously to account for the interaction between conditions that favor different types of pathogen growth. These results indicate that explanation-based approaches are capable of identifying combinations of features that reduce pathogen presence in fewer iterations than a baseline.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. G. Acampora, A. Chiatto, and A. Vitiello, “Genetic algorithms as classical optimizer for the quantum approximate optimization algorithm,” Applied Soft Computing, vol. 142, p. 110296, 2023.
  2. I. Ahmed, G. Jeon, and F. Piccialli, “From artificial intelligence to explainable artificial intelligence in industry 4.0: a survey on what, how, and where,” IEEE Transactions on Industrial Informatics, vol. 18, no. 8, pp. 5031–5042, 2022.
  3. M. B. Ayoola, N. Pillai, B. Nanduri, M. J. Rothrock, and M. Ramkumar, “Preharvest environmental and management drivers of multidrug resistance in major bacterial zoonotic pathogens in pastured poultry flocks,” Microorganisms, vol. 10, no. 9, p. 1703, 2022.
  4. I. Azzini and R. Rosati, “Sobol’main effect index: an innovative algorithm (ia) using dynamic adaptive variances,” Reliability Engineering & System Safety, vol. 213, p. 107647, 2021.
  5. M. B. De Moraes and G. P. Coelho, “A random forest-assisted decomposition-based evolutionary algorithm for multi-objective combinatorial optimization problems,” in 2022 IEEE Congress on Evolutionary Computation (CEC).   IEEE, 2022, pp. 1–8.
  6. E. L. Geist and T. Parsons, “Combinatorial optimization of earthquake spatial distributions under minimum cumulative stress constraints,” Bulletin of the Seismological Society of America, 2023.
  7. D. Gunning, M. Stefik, J. Choi, T. Miller, S. Stumpf, and G.-Z. Yang, “Xai—explainable artificial intelligence,” Science robotics, vol. 4, no. 37, p. eaay7120, 2019.
  8. O. G. Hurtado, R. P. Ch, and J. Moncada, “Exact and approximate sequential methods in solving the quadratic assignment problem,” Journal of Language and Linguistic Studies, vol. 18, no. 3, 2022.
  9. D. Hwang, M. J. Rothrock Jr, H. Pang, G. D. Kumar, and A. Mishra, “Farm management practices that affect the prevalence of salmonella in pastured poultry farms,” Lwt, vol. 127, p. 109423, 2020.
  10. E. Kaya, B. Gorkemli, B. Akay, and D. Karaboga, “A review on the studies employing artificial bee colony algorithm to solve combinatorial optimization problems,” Engineering Applications of Artificial Intelligence, vol. 115, p. 105311, 2022.
  11. S. Laato, M. Tiainen, A. Najmul Islam, and M. Mäntymäki, “How to explain ai systems to end users: a systematic literature review and research agenda,” Internet Research, vol. 32, no. 7, pp. 1–31, 2022.
  12. S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model predictions,” Advances in neural information processing systems, vol. 30, 2017.
  13. ——, “A unified approach to interpreting model predictions,” in Advances in Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds.   Curran Associates, Inc., 2017, pp. 4765–4774. [Online]. Available: http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
  14. S. Majumder, P. S. Barma, A. Biswas, P. Banerjee, B. K. Mandal, S. Kar, and P. Ziemba, “On multi-objective minimum spanning tree problem under uncertain paradigm,” Symmetry, vol. 14, no. 1, p. 106, 2022.
  15. C. Panigutti, A. Beretta, F. Giannotti, and D. Pedreschi, “Understanding the impact of explanations on advice-taking: a user study for ai-based clinical decision support systems,” in Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, 2022, pp. 1–9.
  16. K. Panwar and K. Deep, “Discrete salp swarm algorithm for euclidean travelling salesman problem,” Applied Intelligence, vol. 53, no. 10, pp. 11 420–11 438, 2023.
  17. N. Pillai, M. B. Ayoola, B. Nanduri, M. J. Rothrock Jr, and M. Ramkumar, “An ensemble learning approach to identify pastured poultry farm practice variables and soil constituents that promote salmonella prevalence,” Heliyon, vol. 8, no. 11, p. e11331, 2022.
  18. N. Pillai, B. Nanduri, M. J. Rothrock, Z. Chen, and M. Ramkumar, “Towards optimal microbiome to inhibit multidrug resistance,” in 2023 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), 2023, pp. 1–9.
  19. S. Ricke, S. Park, R. Moore, Y. Kwon, C. Woodward, J. Byrd, D. Nisbet, and L. Kubena, “Feeding low calcium and zinc molt diets sustains gastrointestinal fermentation and limits salmonella enterica serovar enteritidis colonization in laying hens,” Journal of food safety, vol. 24, no. 4, pp. 291–308, 2004.
  20. M. J. Rothrock Jr, K. L. Hiett, J. Y. Guard, and C. R. Jackson, “Antibiotic resistance patterns of major zoonotic pathogens from all-natural, antibiotic-free, pasture-raised broiler flocks in the southeastern united states,” Journal of Environmental Quality, no. 2, pp. 593–603, 2016.
  21. R. D. Shrestha, A. Agunos, S. P. Gow, A. E. Deckert, and C. Varga, “Associations between antimicrobial resistance in fecal escherichia coli isolates and antimicrobial use in canadian turkey flocks,” Frontiers in Microbiology, vol. 13, p. 954123, 2022.
  22. A. Shrikumar, P. Greenside, and A. Kundaje, “Learning important features through propagating activation differences,” in International conference on machine learning.   PMLR, 2017, pp. 3145–3153.
  23. A. Shrikumar, P. Greenside, A. Shcherbina, and A. Kundaje, “Not just a black box: Learning important features through propagating activation differences,” arXiv preprint arXiv:1605.01713, 2016.
  24. H. Tahami and H. Fakhravar, “A literature review on combining heuristics and exact algorithms in combinatorial optimization,” European Journal of Information Technologies and Computer Science, vol. 2, no. 2, pp. 6–12, 2022.
  25. J. M. Weinand, K. Sörensen, P. San Segundo, M. Kleinebrahm, and R. McKenna, “Research trends in combinatorial optimization,” International Transactions in Operational Research, vol. 29, no. 2, pp. 667–705, 2022.
  26. J. Weissteiner, J. Heiss, J. Siems, and S. Seuken, “Bayesian optimization-based combinatorial assignment,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, no. 5, 2023, pp. 5858–5866.
  27. S. Xu, S. S. Panwar, M. Kodialam, and T. Lakshman, “Deep neural network approximated dynamic programming for combinatorial optimization,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 02, 2020, pp. 1684–1691.
  28. X. Xu, M. J. Rothrock Jr, A. Mohan, G. D. Kumar, and A. Mishra, “Using farm management practices to predict campylobacter prevalence in pastured poultry farms,” Poultry Science, vol. 100, no. 6, p. 101122, 2021.
  29. H. Yang, M. Zhao, L. Yuan, Y. Yu, Z. Li, and M. Gu, “Memory-efficient transformer-based network model for traveling salesman problem,” Neural Networks, vol. 161, pp. 589–597, 2023.
  30. J. Zhang, C. Liu, X. Li, H.-L. Zhen, M. Yuan, Y. Li, and J. Yan, “A survey for solving mixed integer programming via machine learning,” Neurocomputing, vol. 519, pp. 205–217, 2023.
  31. T. Zhang, A. Banitalebi-Dehkordi, and Y. Zhang, “Deep reinforcement learning for exact combinatorial optimization: Learning to branch,” in 2022 26th International Conference on Pattern Recognition (ICPR).   IEEE, 2022, pp. 3105–3111.
  32. B. Zhao, W.-N. Chen, F.-F. Wei, X. Liu, Q. Pei, and J. Zhang, “Evolution as a service: A privacy-preserving genetic algorithm for combinatorial optimization,” arXiv preprint arXiv:2205.13948, 2022.
  33. D. Zhu, Z. Huang, L. Xie, and C. Zhou, “Improved particle swarm based on elastic collision for dna coding optimization design,” IEEE Access, vol. 10, pp. 63 592–63 605, 2022.
Citations (1)

Summary

We haven't generated a summary for this paper yet.