Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

One model to use them all: Training a segmentation model with complementary datasets (2402.19340v2)

Published 29 Feb 2024 in cs.CV

Abstract: Understanding a surgical scene is crucial for computer-assisted surgery systems to provide any intelligent assistance functionality. One way of achieving this scene understanding is via scene segmentation, where every pixel of a frame is classified and therefore identifies the visible structures and tissues. Progress on fully segmenting surgical scenes has been made using machine learning. However, such models require large amounts of annotated training data, containing examples of all relevant object classes. Such fully annotated datasets are hard to create, as every pixel in a frame needs to be annotated by medical experts and, therefore, are rarely available. In this work, we propose a method to combine multiple partially annotated datasets, which provide complementary annotations, into one model, enabling better scene segmentation and the use of multiple readily available datasets. Our method aims to combine available data with complementary labels by leveraging mutual exclusive properties to maximize information. Specifically, we propose to use positive annotations of other classes as negative samples and to exclude background pixels of binary annotations, as we cannot tell if they contain a class not annotated but predicted by the model. We evaluate our method by training a DeepLabV3 on the publicly available Dresden Surgical Anatomy Dataset, which provides multiple subsets of binary segmented anatomical structures. Our approach successfully combines 6 classes into one model, increasing the overall Dice Score by 4.4% compared to an ensemble of models trained on the classes individually. By including information on multiple classes, we were able to reduce confusion between stomach and colon by 24%. Our results demonstrate the feasibility of training a model on multiple datasets. This paves the way for future work further alleviating the need for one large, fully segmented datasets.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. Mohammed, A., Yildirim, S., Farup, I., Pedersen, M., Hovde, Ø.: StreoScenNet: surgical stereo robotic scene segmentation. In: Medical Imaging 2019: Image-Guided Procedures, Robotic Interventions, and Modeling, vol. 10951, p. 109510. SPIE, ??? (2019). https://doi.org/10.1117/12.2512518 . International Society for Optics and Photonics Yoon et al. [2022] Yoon, J., Hong, S., Hong, S., Lee, J., Shin, S., Park, B., Sung, N., Yu, H., Kim, S., Park, S., Hyung, W.J., Choi, M.-K.: Surgical scene segmentation using semantic image synthesis with a virtual surgery environment. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2022, pp. 551–561. Springer, Cham (2022) Fuentes-Hurtado et al. [2019] Fuentes-Hurtado, F., Kadkhodamohammadi, A., Flouty, E., Barbarisi, S., Luengo, I., Stoyanov, D.: Easylabels: weak labels for scene segmentation in laparoscopic videos. International journal of computer assisted radiology and surgery 14(7), 1247–1257 (2019) Allan et al. [2020] Allan, M., et al.: 2018 Robotic Scene Segmentation Challenge. arXiv (2020). https://doi.org/10.48550/ARXIV.2001.11190 [6] HeiChole Surgical Workflow Analysis and Full Scene Segmentation (HeiSurF), EndoVis Subchallenge 2021. https://www.synapse.org/#!Synapse:syn25101790/wiki/608802 Accessed 2022-11-14 Maier-Hein et al. [2022] Maier-Hein, L., et al.: Surgical data science – from concepts toward clinical translation. Medical Image Analysis 76, 102306 (2022) https://doi.org/10.1016/j.media.2021.102306 Carstens et al. [2023] Carstens, M., Rinner, F.M., Bodenstedt, S., Jenke, A.C., Weitz, J., Distler, M., Speidel, S., Kolbinger, F.R.: The dresden surgical anatomy dataset for abdominal organ segmentation in surgical data science. Scientific Data 10(1), 1–8 (2023) Shi et al. [2021] Shi, G., Xiao, L., Chen, Y., Zhou, S.K.: Marginal loss and exclusion loss for partially supervised multi-organ segmentation. Medical Image Analysis 70, 101979 (2021) https://doi.org/10.1016/j.media.2021.101979 Ulrich et al. [2023] Ulrich, C., Isensee, F., Wald, T., Zenk, M., Baumgartner, M., Maier-Hein, K.H.: Multitalent: A multi-dataset approach to medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, pp. 648–658. Springer, Cham (2023) Dmitriev and Kaufman [2019] Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Yoon, J., Hong, S., Hong, S., Lee, J., Shin, S., Park, B., Sung, N., Yu, H., Kim, S., Park, S., Hyung, W.J., Choi, M.-K.: Surgical scene segmentation using semantic image synthesis with a virtual surgery environment. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2022, pp. 551–561. Springer, Cham (2022) Fuentes-Hurtado et al. [2019] Fuentes-Hurtado, F., Kadkhodamohammadi, A., Flouty, E., Barbarisi, S., Luengo, I., Stoyanov, D.: Easylabels: weak labels for scene segmentation in laparoscopic videos. International journal of computer assisted radiology and surgery 14(7), 1247–1257 (2019) Allan et al. [2020] Allan, M., et al.: 2018 Robotic Scene Segmentation Challenge. arXiv (2020). https://doi.org/10.48550/ARXIV.2001.11190 [6] HeiChole Surgical Workflow Analysis and Full Scene Segmentation (HeiSurF), EndoVis Subchallenge 2021. https://www.synapse.org/#!Synapse:syn25101790/wiki/608802 Accessed 2022-11-14 Maier-Hein et al. [2022] Maier-Hein, L., et al.: Surgical data science – from concepts toward clinical translation. Medical Image Analysis 76, 102306 (2022) https://doi.org/10.1016/j.media.2021.102306 Carstens et al. [2023] Carstens, M., Rinner, F.M., Bodenstedt, S., Jenke, A.C., Weitz, J., Distler, M., Speidel, S., Kolbinger, F.R.: The dresden surgical anatomy dataset for abdominal organ segmentation in surgical data science. Scientific Data 10(1), 1–8 (2023) Shi et al. [2021] Shi, G., Xiao, L., Chen, Y., Zhou, S.K.: Marginal loss and exclusion loss for partially supervised multi-organ segmentation. Medical Image Analysis 70, 101979 (2021) https://doi.org/10.1016/j.media.2021.101979 Ulrich et al. [2023] Ulrich, C., Isensee, F., Wald, T., Zenk, M., Baumgartner, M., Maier-Hein, K.H.: Multitalent: A multi-dataset approach to medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, pp. 648–658. Springer, Cham (2023) Dmitriev and Kaufman [2019] Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Fuentes-Hurtado, F., Kadkhodamohammadi, A., Flouty, E., Barbarisi, S., Luengo, I., Stoyanov, D.: Easylabels: weak labels for scene segmentation in laparoscopic videos. International journal of computer assisted radiology and surgery 14(7), 1247–1257 (2019) Allan et al. [2020] Allan, M., et al.: 2018 Robotic Scene Segmentation Challenge. arXiv (2020). https://doi.org/10.48550/ARXIV.2001.11190 [6] HeiChole Surgical Workflow Analysis and Full Scene Segmentation (HeiSurF), EndoVis Subchallenge 2021. https://www.synapse.org/#!Synapse:syn25101790/wiki/608802 Accessed 2022-11-14 Maier-Hein et al. [2022] Maier-Hein, L., et al.: Surgical data science – from concepts toward clinical translation. Medical Image Analysis 76, 102306 (2022) https://doi.org/10.1016/j.media.2021.102306 Carstens et al. [2023] Carstens, M., Rinner, F.M., Bodenstedt, S., Jenke, A.C., Weitz, J., Distler, M., Speidel, S., Kolbinger, F.R.: The dresden surgical anatomy dataset for abdominal organ segmentation in surgical data science. Scientific Data 10(1), 1–8 (2023) Shi et al. [2021] Shi, G., Xiao, L., Chen, Y., Zhou, S.K.: Marginal loss and exclusion loss for partially supervised multi-organ segmentation. Medical Image Analysis 70, 101979 (2021) https://doi.org/10.1016/j.media.2021.101979 Ulrich et al. [2023] Ulrich, C., Isensee, F., Wald, T., Zenk, M., Baumgartner, M., Maier-Hein, K.H.: Multitalent: A multi-dataset approach to medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, pp. 648–658. Springer, Cham (2023) Dmitriev and Kaufman [2019] Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Allan, M., et al.: 2018 Robotic Scene Segmentation Challenge. arXiv (2020). https://doi.org/10.48550/ARXIV.2001.11190 [6] HeiChole Surgical Workflow Analysis and Full Scene Segmentation (HeiSurF), EndoVis Subchallenge 2021. https://www.synapse.org/#!Synapse:syn25101790/wiki/608802 Accessed 2022-11-14 Maier-Hein et al. [2022] Maier-Hein, L., et al.: Surgical data science – from concepts toward clinical translation. Medical Image Analysis 76, 102306 (2022) https://doi.org/10.1016/j.media.2021.102306 Carstens et al. [2023] Carstens, M., Rinner, F.M., Bodenstedt, S., Jenke, A.C., Weitz, J., Distler, M., Speidel, S., Kolbinger, F.R.: The dresden surgical anatomy dataset for abdominal organ segmentation in surgical data science. Scientific Data 10(1), 1–8 (2023) Shi et al. [2021] Shi, G., Xiao, L., Chen, Y., Zhou, S.K.: Marginal loss and exclusion loss for partially supervised multi-organ segmentation. Medical Image Analysis 70, 101979 (2021) https://doi.org/10.1016/j.media.2021.101979 Ulrich et al. [2023] Ulrich, C., Isensee, F., Wald, T., Zenk, M., Baumgartner, M., Maier-Hein, K.H.: Multitalent: A multi-dataset approach to medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, pp. 648–658. Springer, Cham (2023) Dmitriev and Kaufman [2019] Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 HeiChole Surgical Workflow Analysis and Full Scene Segmentation (HeiSurF), EndoVis Subchallenge 2021. https://www.synapse.org/#!Synapse:syn25101790/wiki/608802 Accessed 2022-11-14 Maier-Hein et al. [2022] Maier-Hein, L., et al.: Surgical data science – from concepts toward clinical translation. Medical Image Analysis 76, 102306 (2022) https://doi.org/10.1016/j.media.2021.102306 Carstens et al. [2023] Carstens, M., Rinner, F.M., Bodenstedt, S., Jenke, A.C., Weitz, J., Distler, M., Speidel, S., Kolbinger, F.R.: The dresden surgical anatomy dataset for abdominal organ segmentation in surgical data science. Scientific Data 10(1), 1–8 (2023) Shi et al. [2021] Shi, G., Xiao, L., Chen, Y., Zhou, S.K.: Marginal loss and exclusion loss for partially supervised multi-organ segmentation. Medical Image Analysis 70, 101979 (2021) https://doi.org/10.1016/j.media.2021.101979 Ulrich et al. [2023] Ulrich, C., Isensee, F., Wald, T., Zenk, M., Baumgartner, M., Maier-Hein, K.H.: Multitalent: A multi-dataset approach to medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, pp. 648–658. Springer, Cham (2023) Dmitriev and Kaufman [2019] Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Maier-Hein, L., et al.: Surgical data science – from concepts toward clinical translation. Medical Image Analysis 76, 102306 (2022) https://doi.org/10.1016/j.media.2021.102306 Carstens et al. [2023] Carstens, M., Rinner, F.M., Bodenstedt, S., Jenke, A.C., Weitz, J., Distler, M., Speidel, S., Kolbinger, F.R.: The dresden surgical anatomy dataset for abdominal organ segmentation in surgical data science. Scientific Data 10(1), 1–8 (2023) Shi et al. [2021] Shi, G., Xiao, L., Chen, Y., Zhou, S.K.: Marginal loss and exclusion loss for partially supervised multi-organ segmentation. Medical Image Analysis 70, 101979 (2021) https://doi.org/10.1016/j.media.2021.101979 Ulrich et al. [2023] Ulrich, C., Isensee, F., Wald, T., Zenk, M., Baumgartner, M., Maier-Hein, K.H.: Multitalent: A multi-dataset approach to medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, pp. 648–658. Springer, Cham (2023) Dmitriev and Kaufman [2019] Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Carstens, M., Rinner, F.M., Bodenstedt, S., Jenke, A.C., Weitz, J., Distler, M., Speidel, S., Kolbinger, F.R.: The dresden surgical anatomy dataset for abdominal organ segmentation in surgical data science. Scientific Data 10(1), 1–8 (2023) Shi et al. [2021] Shi, G., Xiao, L., Chen, Y., Zhou, S.K.: Marginal loss and exclusion loss for partially supervised multi-organ segmentation. Medical Image Analysis 70, 101979 (2021) https://doi.org/10.1016/j.media.2021.101979 Ulrich et al. [2023] Ulrich, C., Isensee, F., Wald, T., Zenk, M., Baumgartner, M., Maier-Hein, K.H.: Multitalent: A multi-dataset approach to medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, pp. 648–658. Springer, Cham (2023) Dmitriev and Kaufman [2019] Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Shi, G., Xiao, L., Chen, Y., Zhou, S.K.: Marginal loss and exclusion loss for partially supervised multi-organ segmentation. Medical Image Analysis 70, 101979 (2021) https://doi.org/10.1016/j.media.2021.101979 Ulrich et al. [2023] Ulrich, C., Isensee, F., Wald, T., Zenk, M., Baumgartner, M., Maier-Hein, K.H.: Multitalent: A multi-dataset approach to medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, pp. 648–658. Springer, Cham (2023) Dmitriev and Kaufman [2019] Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Ulrich, C., Isensee, F., Wald, T., Zenk, M., Baumgartner, M., Maier-Hein, K.H.: Multitalent: A multi-dataset approach to medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, pp. 648–658. Springer, Cham (2023) Dmitriev and Kaufman [2019] Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703
  2. Yoon, J., Hong, S., Hong, S., Lee, J., Shin, S., Park, B., Sung, N., Yu, H., Kim, S., Park, S., Hyung, W.J., Choi, M.-K.: Surgical scene segmentation using semantic image synthesis with a virtual surgery environment. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2022, pp. 551–561. Springer, Cham (2022) Fuentes-Hurtado et al. [2019] Fuentes-Hurtado, F., Kadkhodamohammadi, A., Flouty, E., Barbarisi, S., Luengo, I., Stoyanov, D.: Easylabels: weak labels for scene segmentation in laparoscopic videos. International journal of computer assisted radiology and surgery 14(7), 1247–1257 (2019) Allan et al. [2020] Allan, M., et al.: 2018 Robotic Scene Segmentation Challenge. arXiv (2020). https://doi.org/10.48550/ARXIV.2001.11190 [6] HeiChole Surgical Workflow Analysis and Full Scene Segmentation (HeiSurF), EndoVis Subchallenge 2021. https://www.synapse.org/#!Synapse:syn25101790/wiki/608802 Accessed 2022-11-14 Maier-Hein et al. [2022] Maier-Hein, L., et al.: Surgical data science – from concepts toward clinical translation. Medical Image Analysis 76, 102306 (2022) https://doi.org/10.1016/j.media.2021.102306 Carstens et al. [2023] Carstens, M., Rinner, F.M., Bodenstedt, S., Jenke, A.C., Weitz, J., Distler, M., Speidel, S., Kolbinger, F.R.: The dresden surgical anatomy dataset for abdominal organ segmentation in surgical data science. Scientific Data 10(1), 1–8 (2023) Shi et al. [2021] Shi, G., Xiao, L., Chen, Y., Zhou, S.K.: Marginal loss and exclusion loss for partially supervised multi-organ segmentation. Medical Image Analysis 70, 101979 (2021) https://doi.org/10.1016/j.media.2021.101979 Ulrich et al. [2023] Ulrich, C., Isensee, F., Wald, T., Zenk, M., Baumgartner, M., Maier-Hein, K.H.: Multitalent: A multi-dataset approach to medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, pp. 648–658. Springer, Cham (2023) Dmitriev and Kaufman [2019] Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Fuentes-Hurtado, F., Kadkhodamohammadi, A., Flouty, E., Barbarisi, S., Luengo, I., Stoyanov, D.: Easylabels: weak labels for scene segmentation in laparoscopic videos. International journal of computer assisted radiology and surgery 14(7), 1247–1257 (2019) Allan et al. [2020] Allan, M., et al.: 2018 Robotic Scene Segmentation Challenge. arXiv (2020). https://doi.org/10.48550/ARXIV.2001.11190 [6] HeiChole Surgical Workflow Analysis and Full Scene Segmentation (HeiSurF), EndoVis Subchallenge 2021. https://www.synapse.org/#!Synapse:syn25101790/wiki/608802 Accessed 2022-11-14 Maier-Hein et al. [2022] Maier-Hein, L., et al.: Surgical data science – from concepts toward clinical translation. Medical Image Analysis 76, 102306 (2022) https://doi.org/10.1016/j.media.2021.102306 Carstens et al. [2023] Carstens, M., Rinner, F.M., Bodenstedt, S., Jenke, A.C., Weitz, J., Distler, M., Speidel, S., Kolbinger, F.R.: The dresden surgical anatomy dataset for abdominal organ segmentation in surgical data science. Scientific Data 10(1), 1–8 (2023) Shi et al. [2021] Shi, G., Xiao, L., Chen, Y., Zhou, S.K.: Marginal loss and exclusion loss for partially supervised multi-organ segmentation. Medical Image Analysis 70, 101979 (2021) https://doi.org/10.1016/j.media.2021.101979 Ulrich et al. [2023] Ulrich, C., Isensee, F., Wald, T., Zenk, M., Baumgartner, M., Maier-Hein, K.H.: Multitalent: A multi-dataset approach to medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, pp. 648–658. Springer, Cham (2023) Dmitriev and Kaufman [2019] Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Allan, M., et al.: 2018 Robotic Scene Segmentation Challenge. arXiv (2020). https://doi.org/10.48550/ARXIV.2001.11190 [6] HeiChole Surgical Workflow Analysis and Full Scene Segmentation (HeiSurF), EndoVis Subchallenge 2021. https://www.synapse.org/#!Synapse:syn25101790/wiki/608802 Accessed 2022-11-14 Maier-Hein et al. [2022] Maier-Hein, L., et al.: Surgical data science – from concepts toward clinical translation. Medical Image Analysis 76, 102306 (2022) https://doi.org/10.1016/j.media.2021.102306 Carstens et al. [2023] Carstens, M., Rinner, F.M., Bodenstedt, S., Jenke, A.C., Weitz, J., Distler, M., Speidel, S., Kolbinger, F.R.: The dresden surgical anatomy dataset for abdominal organ segmentation in surgical data science. Scientific Data 10(1), 1–8 (2023) Shi et al. [2021] Shi, G., Xiao, L., Chen, Y., Zhou, S.K.: Marginal loss and exclusion loss for partially supervised multi-organ segmentation. Medical Image Analysis 70, 101979 (2021) https://doi.org/10.1016/j.media.2021.101979 Ulrich et al. [2023] Ulrich, C., Isensee, F., Wald, T., Zenk, M., Baumgartner, M., Maier-Hein, K.H.: Multitalent: A multi-dataset approach to medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, pp. 648–658. Springer, Cham (2023) Dmitriev and Kaufman [2019] Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 HeiChole Surgical Workflow Analysis and Full Scene Segmentation (HeiSurF), EndoVis Subchallenge 2021. https://www.synapse.org/#!Synapse:syn25101790/wiki/608802 Accessed 2022-11-14 Maier-Hein et al. [2022] Maier-Hein, L., et al.: Surgical data science – from concepts toward clinical translation. Medical Image Analysis 76, 102306 (2022) https://doi.org/10.1016/j.media.2021.102306 Carstens et al. [2023] Carstens, M., Rinner, F.M., Bodenstedt, S., Jenke, A.C., Weitz, J., Distler, M., Speidel, S., Kolbinger, F.R.: The dresden surgical anatomy dataset for abdominal organ segmentation in surgical data science. Scientific Data 10(1), 1–8 (2023) Shi et al. [2021] Shi, G., Xiao, L., Chen, Y., Zhou, S.K.: Marginal loss and exclusion loss for partially supervised multi-organ segmentation. Medical Image Analysis 70, 101979 (2021) https://doi.org/10.1016/j.media.2021.101979 Ulrich et al. [2023] Ulrich, C., Isensee, F., Wald, T., Zenk, M., Baumgartner, M., Maier-Hein, K.H.: Multitalent: A multi-dataset approach to medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, pp. 648–658. Springer, Cham (2023) Dmitriev and Kaufman [2019] Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Maier-Hein, L., et al.: Surgical data science – from concepts toward clinical translation. Medical Image Analysis 76, 102306 (2022) https://doi.org/10.1016/j.media.2021.102306 Carstens et al. [2023] Carstens, M., Rinner, F.M., Bodenstedt, S., Jenke, A.C., Weitz, J., Distler, M., Speidel, S., Kolbinger, F.R.: The dresden surgical anatomy dataset for abdominal organ segmentation in surgical data science. Scientific Data 10(1), 1–8 (2023) Shi et al. [2021] Shi, G., Xiao, L., Chen, Y., Zhou, S.K.: Marginal loss and exclusion loss for partially supervised multi-organ segmentation. Medical Image Analysis 70, 101979 (2021) https://doi.org/10.1016/j.media.2021.101979 Ulrich et al. [2023] Ulrich, C., Isensee, F., Wald, T., Zenk, M., Baumgartner, M., Maier-Hein, K.H.: Multitalent: A multi-dataset approach to medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, pp. 648–658. Springer, Cham (2023) Dmitriev and Kaufman [2019] Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Carstens, M., Rinner, F.M., Bodenstedt, S., Jenke, A.C., Weitz, J., Distler, M., Speidel, S., Kolbinger, F.R.: The dresden surgical anatomy dataset for abdominal organ segmentation in surgical data science. Scientific Data 10(1), 1–8 (2023) Shi et al. [2021] Shi, G., Xiao, L., Chen, Y., Zhou, S.K.: Marginal loss and exclusion loss for partially supervised multi-organ segmentation. Medical Image Analysis 70, 101979 (2021) https://doi.org/10.1016/j.media.2021.101979 Ulrich et al. [2023] Ulrich, C., Isensee, F., Wald, T., Zenk, M., Baumgartner, M., Maier-Hein, K.H.: Multitalent: A multi-dataset approach to medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, pp. 648–658. Springer, Cham (2023) Dmitriev and Kaufman [2019] Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Shi, G., Xiao, L., Chen, Y., Zhou, S.K.: Marginal loss and exclusion loss for partially supervised multi-organ segmentation. Medical Image Analysis 70, 101979 (2021) https://doi.org/10.1016/j.media.2021.101979 Ulrich et al. [2023] Ulrich, C., Isensee, F., Wald, T., Zenk, M., Baumgartner, M., Maier-Hein, K.H.: Multitalent: A multi-dataset approach to medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, pp. 648–658. Springer, Cham (2023) Dmitriev and Kaufman [2019] Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Ulrich, C., Isensee, F., Wald, T., Zenk, M., Baumgartner, M., Maier-Hein, K.H.: Multitalent: A multi-dataset approach to medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, pp. 648–658. Springer, Cham (2023) Dmitriev and Kaufman [2019] Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703
  3. Fuentes-Hurtado, F., Kadkhodamohammadi, A., Flouty, E., Barbarisi, S., Luengo, I., Stoyanov, D.: Easylabels: weak labels for scene segmentation in laparoscopic videos. International journal of computer assisted radiology and surgery 14(7), 1247–1257 (2019) Allan et al. [2020] Allan, M., et al.: 2018 Robotic Scene Segmentation Challenge. arXiv (2020). https://doi.org/10.48550/ARXIV.2001.11190 [6] HeiChole Surgical Workflow Analysis and Full Scene Segmentation (HeiSurF), EndoVis Subchallenge 2021. https://www.synapse.org/#!Synapse:syn25101790/wiki/608802 Accessed 2022-11-14 Maier-Hein et al. [2022] Maier-Hein, L., et al.: Surgical data science – from concepts toward clinical translation. Medical Image Analysis 76, 102306 (2022) https://doi.org/10.1016/j.media.2021.102306 Carstens et al. [2023] Carstens, M., Rinner, F.M., Bodenstedt, S., Jenke, A.C., Weitz, J., Distler, M., Speidel, S., Kolbinger, F.R.: The dresden surgical anatomy dataset for abdominal organ segmentation in surgical data science. Scientific Data 10(1), 1–8 (2023) Shi et al. [2021] Shi, G., Xiao, L., Chen, Y., Zhou, S.K.: Marginal loss and exclusion loss for partially supervised multi-organ segmentation. Medical Image Analysis 70, 101979 (2021) https://doi.org/10.1016/j.media.2021.101979 Ulrich et al. [2023] Ulrich, C., Isensee, F., Wald, T., Zenk, M., Baumgartner, M., Maier-Hein, K.H.: Multitalent: A multi-dataset approach to medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, pp. 648–658. Springer, Cham (2023) Dmitriev and Kaufman [2019] Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Allan, M., et al.: 2018 Robotic Scene Segmentation Challenge. arXiv (2020). https://doi.org/10.48550/ARXIV.2001.11190 [6] HeiChole Surgical Workflow Analysis and Full Scene Segmentation (HeiSurF), EndoVis Subchallenge 2021. https://www.synapse.org/#!Synapse:syn25101790/wiki/608802 Accessed 2022-11-14 Maier-Hein et al. [2022] Maier-Hein, L., et al.: Surgical data science – from concepts toward clinical translation. Medical Image Analysis 76, 102306 (2022) https://doi.org/10.1016/j.media.2021.102306 Carstens et al. [2023] Carstens, M., Rinner, F.M., Bodenstedt, S., Jenke, A.C., Weitz, J., Distler, M., Speidel, S., Kolbinger, F.R.: The dresden surgical anatomy dataset for abdominal organ segmentation in surgical data science. Scientific Data 10(1), 1–8 (2023) Shi et al. [2021] Shi, G., Xiao, L., Chen, Y., Zhou, S.K.: Marginal loss and exclusion loss for partially supervised multi-organ segmentation. Medical Image Analysis 70, 101979 (2021) https://doi.org/10.1016/j.media.2021.101979 Ulrich et al. [2023] Ulrich, C., Isensee, F., Wald, T., Zenk, M., Baumgartner, M., Maier-Hein, K.H.: Multitalent: A multi-dataset approach to medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, pp. 648–658. Springer, Cham (2023) Dmitriev and Kaufman [2019] Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 HeiChole Surgical Workflow Analysis and Full Scene Segmentation (HeiSurF), EndoVis Subchallenge 2021. https://www.synapse.org/#!Synapse:syn25101790/wiki/608802 Accessed 2022-11-14 Maier-Hein et al. [2022] Maier-Hein, L., et al.: Surgical data science – from concepts toward clinical translation. Medical Image Analysis 76, 102306 (2022) https://doi.org/10.1016/j.media.2021.102306 Carstens et al. [2023] Carstens, M., Rinner, F.M., Bodenstedt, S., Jenke, A.C., Weitz, J., Distler, M., Speidel, S., Kolbinger, F.R.: The dresden surgical anatomy dataset for abdominal organ segmentation in surgical data science. Scientific Data 10(1), 1–8 (2023) Shi et al. [2021] Shi, G., Xiao, L., Chen, Y., Zhou, S.K.: Marginal loss and exclusion loss for partially supervised multi-organ segmentation. Medical Image Analysis 70, 101979 (2021) https://doi.org/10.1016/j.media.2021.101979 Ulrich et al. [2023] Ulrich, C., Isensee, F., Wald, T., Zenk, M., Baumgartner, M., Maier-Hein, K.H.: Multitalent: A multi-dataset approach to medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, pp. 648–658. Springer, Cham (2023) Dmitriev and Kaufman [2019] Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Maier-Hein, L., et al.: Surgical data science – from concepts toward clinical translation. Medical Image Analysis 76, 102306 (2022) https://doi.org/10.1016/j.media.2021.102306 Carstens et al. [2023] Carstens, M., Rinner, F.M., Bodenstedt, S., Jenke, A.C., Weitz, J., Distler, M., Speidel, S., Kolbinger, F.R.: The dresden surgical anatomy dataset for abdominal organ segmentation in surgical data science. Scientific Data 10(1), 1–8 (2023) Shi et al. [2021] Shi, G., Xiao, L., Chen, Y., Zhou, S.K.: Marginal loss and exclusion loss for partially supervised multi-organ segmentation. Medical Image Analysis 70, 101979 (2021) https://doi.org/10.1016/j.media.2021.101979 Ulrich et al. [2023] Ulrich, C., Isensee, F., Wald, T., Zenk, M., Baumgartner, M., Maier-Hein, K.H.: Multitalent: A multi-dataset approach to medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, pp. 648–658. Springer, Cham (2023) Dmitriev and Kaufman [2019] Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Carstens, M., Rinner, F.M., Bodenstedt, S., Jenke, A.C., Weitz, J., Distler, M., Speidel, S., Kolbinger, F.R.: The dresden surgical anatomy dataset for abdominal organ segmentation in surgical data science. Scientific Data 10(1), 1–8 (2023) Shi et al. [2021] Shi, G., Xiao, L., Chen, Y., Zhou, S.K.: Marginal loss and exclusion loss for partially supervised multi-organ segmentation. Medical Image Analysis 70, 101979 (2021) https://doi.org/10.1016/j.media.2021.101979 Ulrich et al. [2023] Ulrich, C., Isensee, F., Wald, T., Zenk, M., Baumgartner, M., Maier-Hein, K.H.: Multitalent: A multi-dataset approach to medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, pp. 648–658. Springer, Cham (2023) Dmitriev and Kaufman [2019] Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Shi, G., Xiao, L., Chen, Y., Zhou, S.K.: Marginal loss and exclusion loss for partially supervised multi-organ segmentation. Medical Image Analysis 70, 101979 (2021) https://doi.org/10.1016/j.media.2021.101979 Ulrich et al. [2023] Ulrich, C., Isensee, F., Wald, T., Zenk, M., Baumgartner, M., Maier-Hein, K.H.: Multitalent: A multi-dataset approach to medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, pp. 648–658. Springer, Cham (2023) Dmitriev and Kaufman [2019] Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Ulrich, C., Isensee, F., Wald, T., Zenk, M., Baumgartner, M., Maier-Hein, K.H.: Multitalent: A multi-dataset approach to medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, pp. 648–658. Springer, Cham (2023) Dmitriev and Kaufman [2019] Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703
  4. Allan, M., et al.: 2018 Robotic Scene Segmentation Challenge. arXiv (2020). https://doi.org/10.48550/ARXIV.2001.11190 [6] HeiChole Surgical Workflow Analysis and Full Scene Segmentation (HeiSurF), EndoVis Subchallenge 2021. https://www.synapse.org/#!Synapse:syn25101790/wiki/608802 Accessed 2022-11-14 Maier-Hein et al. [2022] Maier-Hein, L., et al.: Surgical data science – from concepts toward clinical translation. Medical Image Analysis 76, 102306 (2022) https://doi.org/10.1016/j.media.2021.102306 Carstens et al. [2023] Carstens, M., Rinner, F.M., Bodenstedt, S., Jenke, A.C., Weitz, J., Distler, M., Speidel, S., Kolbinger, F.R.: The dresden surgical anatomy dataset for abdominal organ segmentation in surgical data science. Scientific Data 10(1), 1–8 (2023) Shi et al. [2021] Shi, G., Xiao, L., Chen, Y., Zhou, S.K.: Marginal loss and exclusion loss for partially supervised multi-organ segmentation. Medical Image Analysis 70, 101979 (2021) https://doi.org/10.1016/j.media.2021.101979 Ulrich et al. [2023] Ulrich, C., Isensee, F., Wald, T., Zenk, M., Baumgartner, M., Maier-Hein, K.H.: Multitalent: A multi-dataset approach to medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, pp. 648–658. Springer, Cham (2023) Dmitriev and Kaufman [2019] Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 HeiChole Surgical Workflow Analysis and Full Scene Segmentation (HeiSurF), EndoVis Subchallenge 2021. https://www.synapse.org/#!Synapse:syn25101790/wiki/608802 Accessed 2022-11-14 Maier-Hein et al. [2022] Maier-Hein, L., et al.: Surgical data science – from concepts toward clinical translation. Medical Image Analysis 76, 102306 (2022) https://doi.org/10.1016/j.media.2021.102306 Carstens et al. [2023] Carstens, M., Rinner, F.M., Bodenstedt, S., Jenke, A.C., Weitz, J., Distler, M., Speidel, S., Kolbinger, F.R.: The dresden surgical anatomy dataset for abdominal organ segmentation in surgical data science. Scientific Data 10(1), 1–8 (2023) Shi et al. [2021] Shi, G., Xiao, L., Chen, Y., Zhou, S.K.: Marginal loss and exclusion loss for partially supervised multi-organ segmentation. Medical Image Analysis 70, 101979 (2021) https://doi.org/10.1016/j.media.2021.101979 Ulrich et al. [2023] Ulrich, C., Isensee, F., Wald, T., Zenk, M., Baumgartner, M., Maier-Hein, K.H.: Multitalent: A multi-dataset approach to medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, pp. 648–658. Springer, Cham (2023) Dmitriev and Kaufman [2019] Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Maier-Hein, L., et al.: Surgical data science – from concepts toward clinical translation. Medical Image Analysis 76, 102306 (2022) https://doi.org/10.1016/j.media.2021.102306 Carstens et al. [2023] Carstens, M., Rinner, F.M., Bodenstedt, S., Jenke, A.C., Weitz, J., Distler, M., Speidel, S., Kolbinger, F.R.: The dresden surgical anatomy dataset for abdominal organ segmentation in surgical data science. Scientific Data 10(1), 1–8 (2023) Shi et al. [2021] Shi, G., Xiao, L., Chen, Y., Zhou, S.K.: Marginal loss and exclusion loss for partially supervised multi-organ segmentation. Medical Image Analysis 70, 101979 (2021) https://doi.org/10.1016/j.media.2021.101979 Ulrich et al. [2023] Ulrich, C., Isensee, F., Wald, T., Zenk, M., Baumgartner, M., Maier-Hein, K.H.: Multitalent: A multi-dataset approach to medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, pp. 648–658. Springer, Cham (2023) Dmitriev and Kaufman [2019] Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Carstens, M., Rinner, F.M., Bodenstedt, S., Jenke, A.C., Weitz, J., Distler, M., Speidel, S., Kolbinger, F.R.: The dresden surgical anatomy dataset for abdominal organ segmentation in surgical data science. Scientific Data 10(1), 1–8 (2023) Shi et al. [2021] Shi, G., Xiao, L., Chen, Y., Zhou, S.K.: Marginal loss and exclusion loss for partially supervised multi-organ segmentation. Medical Image Analysis 70, 101979 (2021) https://doi.org/10.1016/j.media.2021.101979 Ulrich et al. [2023] Ulrich, C., Isensee, F., Wald, T., Zenk, M., Baumgartner, M., Maier-Hein, K.H.: Multitalent: A multi-dataset approach to medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, pp. 648–658. Springer, Cham (2023) Dmitriev and Kaufman [2019] Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Shi, G., Xiao, L., Chen, Y., Zhou, S.K.: Marginal loss and exclusion loss for partially supervised multi-organ segmentation. Medical Image Analysis 70, 101979 (2021) https://doi.org/10.1016/j.media.2021.101979 Ulrich et al. [2023] Ulrich, C., Isensee, F., Wald, T., Zenk, M., Baumgartner, M., Maier-Hein, K.H.: Multitalent: A multi-dataset approach to medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, pp. 648–658. Springer, Cham (2023) Dmitriev and Kaufman [2019] Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Ulrich, C., Isensee, F., Wald, T., Zenk, M., Baumgartner, M., Maier-Hein, K.H.: Multitalent: A multi-dataset approach to medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, pp. 648–658. Springer, Cham (2023) Dmitriev and Kaufman [2019] Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703
  5. HeiChole Surgical Workflow Analysis and Full Scene Segmentation (HeiSurF), EndoVis Subchallenge 2021. https://www.synapse.org/#!Synapse:syn25101790/wiki/608802 Accessed 2022-11-14 Maier-Hein et al. [2022] Maier-Hein, L., et al.: Surgical data science – from concepts toward clinical translation. Medical Image Analysis 76, 102306 (2022) https://doi.org/10.1016/j.media.2021.102306 Carstens et al. [2023] Carstens, M., Rinner, F.M., Bodenstedt, S., Jenke, A.C., Weitz, J., Distler, M., Speidel, S., Kolbinger, F.R.: The dresden surgical anatomy dataset for abdominal organ segmentation in surgical data science. Scientific Data 10(1), 1–8 (2023) Shi et al. [2021] Shi, G., Xiao, L., Chen, Y., Zhou, S.K.: Marginal loss and exclusion loss for partially supervised multi-organ segmentation. Medical Image Analysis 70, 101979 (2021) https://doi.org/10.1016/j.media.2021.101979 Ulrich et al. [2023] Ulrich, C., Isensee, F., Wald, T., Zenk, M., Baumgartner, M., Maier-Hein, K.H.: Multitalent: A multi-dataset approach to medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, pp. 648–658. Springer, Cham (2023) Dmitriev and Kaufman [2019] Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Maier-Hein, L., et al.: Surgical data science – from concepts toward clinical translation. Medical Image Analysis 76, 102306 (2022) https://doi.org/10.1016/j.media.2021.102306 Carstens et al. [2023] Carstens, M., Rinner, F.M., Bodenstedt, S., Jenke, A.C., Weitz, J., Distler, M., Speidel, S., Kolbinger, F.R.: The dresden surgical anatomy dataset for abdominal organ segmentation in surgical data science. Scientific Data 10(1), 1–8 (2023) Shi et al. [2021] Shi, G., Xiao, L., Chen, Y., Zhou, S.K.: Marginal loss and exclusion loss for partially supervised multi-organ segmentation. Medical Image Analysis 70, 101979 (2021) https://doi.org/10.1016/j.media.2021.101979 Ulrich et al. [2023] Ulrich, C., Isensee, F., Wald, T., Zenk, M., Baumgartner, M., Maier-Hein, K.H.: Multitalent: A multi-dataset approach to medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, pp. 648–658. Springer, Cham (2023) Dmitriev and Kaufman [2019] Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Carstens, M., Rinner, F.M., Bodenstedt, S., Jenke, A.C., Weitz, J., Distler, M., Speidel, S., Kolbinger, F.R.: The dresden surgical anatomy dataset for abdominal organ segmentation in surgical data science. Scientific Data 10(1), 1–8 (2023) Shi et al. [2021] Shi, G., Xiao, L., Chen, Y., Zhou, S.K.: Marginal loss and exclusion loss for partially supervised multi-organ segmentation. Medical Image Analysis 70, 101979 (2021) https://doi.org/10.1016/j.media.2021.101979 Ulrich et al. [2023] Ulrich, C., Isensee, F., Wald, T., Zenk, M., Baumgartner, M., Maier-Hein, K.H.: Multitalent: A multi-dataset approach to medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, pp. 648–658. Springer, Cham (2023) Dmitriev and Kaufman [2019] Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Shi, G., Xiao, L., Chen, Y., Zhou, S.K.: Marginal loss and exclusion loss for partially supervised multi-organ segmentation. Medical Image Analysis 70, 101979 (2021) https://doi.org/10.1016/j.media.2021.101979 Ulrich et al. [2023] Ulrich, C., Isensee, F., Wald, T., Zenk, M., Baumgartner, M., Maier-Hein, K.H.: Multitalent: A multi-dataset approach to medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, pp. 648–658. Springer, Cham (2023) Dmitriev and Kaufman [2019] Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Ulrich, C., Isensee, F., Wald, T., Zenk, M., Baumgartner, M., Maier-Hein, K.H.: Multitalent: A multi-dataset approach to medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, pp. 648–658. Springer, Cham (2023) Dmitriev and Kaufman [2019] Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703
  6. Maier-Hein, L., et al.: Surgical data science – from concepts toward clinical translation. Medical Image Analysis 76, 102306 (2022) https://doi.org/10.1016/j.media.2021.102306 Carstens et al. [2023] Carstens, M., Rinner, F.M., Bodenstedt, S., Jenke, A.C., Weitz, J., Distler, M., Speidel, S., Kolbinger, F.R.: The dresden surgical anatomy dataset for abdominal organ segmentation in surgical data science. Scientific Data 10(1), 1–8 (2023) Shi et al. [2021] Shi, G., Xiao, L., Chen, Y., Zhou, S.K.: Marginal loss and exclusion loss for partially supervised multi-organ segmentation. Medical Image Analysis 70, 101979 (2021) https://doi.org/10.1016/j.media.2021.101979 Ulrich et al. [2023] Ulrich, C., Isensee, F., Wald, T., Zenk, M., Baumgartner, M., Maier-Hein, K.H.: Multitalent: A multi-dataset approach to medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, pp. 648–658. Springer, Cham (2023) Dmitriev and Kaufman [2019] Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Carstens, M., Rinner, F.M., Bodenstedt, S., Jenke, A.C., Weitz, J., Distler, M., Speidel, S., Kolbinger, F.R.: The dresden surgical anatomy dataset for abdominal organ segmentation in surgical data science. Scientific Data 10(1), 1–8 (2023) Shi et al. [2021] Shi, G., Xiao, L., Chen, Y., Zhou, S.K.: Marginal loss and exclusion loss for partially supervised multi-organ segmentation. Medical Image Analysis 70, 101979 (2021) https://doi.org/10.1016/j.media.2021.101979 Ulrich et al. [2023] Ulrich, C., Isensee, F., Wald, T., Zenk, M., Baumgartner, M., Maier-Hein, K.H.: Multitalent: A multi-dataset approach to medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, pp. 648–658. Springer, Cham (2023) Dmitriev and Kaufman [2019] Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Shi, G., Xiao, L., Chen, Y., Zhou, S.K.: Marginal loss and exclusion loss for partially supervised multi-organ segmentation. Medical Image Analysis 70, 101979 (2021) https://doi.org/10.1016/j.media.2021.101979 Ulrich et al. [2023] Ulrich, C., Isensee, F., Wald, T., Zenk, M., Baumgartner, M., Maier-Hein, K.H.: Multitalent: A multi-dataset approach to medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, pp. 648–658. Springer, Cham (2023) Dmitriev and Kaufman [2019] Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Ulrich, C., Isensee, F., Wald, T., Zenk, M., Baumgartner, M., Maier-Hein, K.H.: Multitalent: A multi-dataset approach to medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, pp. 648–658. Springer, Cham (2023) Dmitriev and Kaufman [2019] Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703
  7. Carstens, M., Rinner, F.M., Bodenstedt, S., Jenke, A.C., Weitz, J., Distler, M., Speidel, S., Kolbinger, F.R.: The dresden surgical anatomy dataset for abdominal organ segmentation in surgical data science. Scientific Data 10(1), 1–8 (2023) Shi et al. [2021] Shi, G., Xiao, L., Chen, Y., Zhou, S.K.: Marginal loss and exclusion loss for partially supervised multi-organ segmentation. Medical Image Analysis 70, 101979 (2021) https://doi.org/10.1016/j.media.2021.101979 Ulrich et al. [2023] Ulrich, C., Isensee, F., Wald, T., Zenk, M., Baumgartner, M., Maier-Hein, K.H.: Multitalent: A multi-dataset approach to medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, pp. 648–658. Springer, Cham (2023) Dmitriev and Kaufman [2019] Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Shi, G., Xiao, L., Chen, Y., Zhou, S.K.: Marginal loss and exclusion loss for partially supervised multi-organ segmentation. Medical Image Analysis 70, 101979 (2021) https://doi.org/10.1016/j.media.2021.101979 Ulrich et al. [2023] Ulrich, C., Isensee, F., Wald, T., Zenk, M., Baumgartner, M., Maier-Hein, K.H.: Multitalent: A multi-dataset approach to medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, pp. 648–658. Springer, Cham (2023) Dmitriev and Kaufman [2019] Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Ulrich, C., Isensee, F., Wald, T., Zenk, M., Baumgartner, M., Maier-Hein, K.H.: Multitalent: A multi-dataset approach to medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, pp. 648–658. Springer, Cham (2023) Dmitriev and Kaufman [2019] Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703
  8. Shi, G., Xiao, L., Chen, Y., Zhou, S.K.: Marginal loss and exclusion loss for partially supervised multi-organ segmentation. Medical Image Analysis 70, 101979 (2021) https://doi.org/10.1016/j.media.2021.101979 Ulrich et al. [2023] Ulrich, C., Isensee, F., Wald, T., Zenk, M., Baumgartner, M., Maier-Hein, K.H.: Multitalent: A multi-dataset approach to medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, pp. 648–658. Springer, Cham (2023) Dmitriev and Kaufman [2019] Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Ulrich, C., Isensee, F., Wald, T., Zenk, M., Baumgartner, M., Maier-Hein, K.H.: Multitalent: A multi-dataset approach to medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, pp. 648–658. Springer, Cham (2023) Dmitriev and Kaufman [2019] Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703
  9. Ulrich, C., Isensee, F., Wald, T., Zenk, M., Baumgartner, M., Maier-Hein, K.H.: Multitalent: A multi-dataset approach to medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, pp. 648–658. Springer, Cham (2023) Dmitriev and Kaufman [2019] Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703
  10. Dmitriev, K., Kaufman, A.E.: Learning multi-class segmentations from single-class datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9501–9511 (2019) Yan et al. [2020] Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703
  11. Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2020) Dice [1945] Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703
  12. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945) https://doi.org/10.2307/1932409 Kolbinger et al. [2022] Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703
  13. Kolbinger, F.R., Rinner, F.M., Jenke, A.C., Carstens, M., Leger, S., Distler, M., Weitz, J., Speidel, S., Bodenstedt, S.: Better than humans? machine learning-based anatomy recognition in minimally-invasive abdominal surgery. medRxiv (2022) https://doi.org/10.1101/2022.11.11.22282215 Chen et al. [2017] Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703
  14. Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587 Lin et al. [2014] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703
  15. Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft COCO: Common Objects in Context. arXiv (2014). https://doi.org/10.48550/ARXIV.1405.0312 Paszke et al. [2019] Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703 Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703
  16. Paszke, A., et al.: PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv (2019). https://doi.org/10.48550/ARXIV.1912.01703 . https://arxiv.org/abs/1912.01703
Citations (2)

Summary

We haven't generated a summary for this paper yet.