Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Degradation Modeling and Prognostic Analysis Under Unknown Failure Modes (2402.19294v1)

Published 29 Feb 2024 in cs.LG and cs.AI

Abstract: Operating units often experience various failure modes in complex systems, leading to distinct degradation paths. Relying on a prognostic model trained on a single failure mode may lead to poor generalization performance across multiple failure modes. Therefore, accurately identifying the failure mode is of critical importance. Current prognostic approaches either ignore failure modes during degradation or assume known failure mode labels, which can be challenging to acquire in practice. Moreover, the high dimensionality and complex relations of sensor signals make it challenging to identify the failure modes accurately. To address these issues, we propose a novel failure mode diagnosis method that leverages a dimension reduction technique called UMAP (Uniform Manifold Approximation and Projection) to project and visualize each unit's degradation trajectory into a lower dimension. Then, using these degradation trajectories, we develop a time series-based clustering method to identify the training units' failure modes. Finally, we introduce a monotonically constrained prognostic model to predict the failure mode labels and RUL of the test units simultaneously using the obtained failure modes of the training units. The proposed prognostic model provides failure mode-specific RUL predictions while preserving the monotonic property of the RUL predictions across consecutive time steps. We evaluate the proposed model using a case study with the aircraft gas turbine engine dataset.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. T. Li, Z. Zhou, S. Li, C. Sun, R. Yan, and X. Chen, “The emerging graph neural networks for intelligent fault diagnostics and prognostics: A guideline and a benchmark study,” Mechanical Systems and Signal Processing, vol. 168, p. 108653, 2022.
  2. M. Kim and K. Liu, “A bayesian deep learning framework for interval estimation of remaining useful life in complex systems by incorporating general degradation characteristics,” IISE Transactions, vol. 53, no. 3, pp. 326–340, 2021. [Online]. Available: https://doi.org/10.1080/24725854.2020.1766729
  3. H. Chen, Y. Xiong, S. Li, Z. Song, Z. Hu, and F. Liu, “Multi-sensor data driven with parafac-ipso-pnn for identification of mechanical nonstationary multi-fault mode,” Machines, vol. 10, no. 2, 2022. [Online]. Available: https://www.mdpi.com/2075-1702/10/2/155
  4. A. Saxena, K. Goebel, D. Simon, and N. Eklund, “Damage propagation modeling for aircraft engine run-to-failure simulation,” in 2008 international conference on prognostics and health management.   IEEE, 2008, pp. 1–9.
  5. A. Chehade, C. Song, K. Liu, A. Saxena, and X. Zhang, “A data-level fusion approach for degradation modeling and prognostic analysis under multiple failure modes,” Journal of Quality Technology, vol. 50, no. 2, pp. 150–165, 2018.
  6. Z. Li, Y. Li, X. Yue, E. Zio, and J. Wu, “A deep branched network for failure mode diagnostics and remaining useful life prediction,” IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1–11, 2022.
  7. D. Wang, X. Xian, and C. Song, “Joint learning of failure mode recognition and prognostics for degradation processes,” IEEE Transactions on Automation Science and Engineering, 2023.
  8. J. Chen, H. Jing, Y. Chang, and Q. Liu, “Gated recurrent unit based recurrent neural network for remaining useful life prediction of nonlinear deterioration process,” Reliability Engineering & System Safety, vol. 185, pp. 372–382, 2019.
  9. M. Kim and K. Liu, “A bayesian deep learning framework for interval estimation of remaining useful life in complex systems by incorporating general degradation characteristics,” IISE Transactions, vol. 53, no. 3, pp. 326–340, 2020.
  10. E. Becht, L. McInnes, J. Healy, C.-A. Dutertre, I. W. Kwok, L. G. Ng, F. Ginhoux, and E. W. Newell, “Dimensionality reduction for visualizing single-cell data using umap,” Nature biotechnology, vol. 37, no. 1, pp. 38–44, 2019.
  11. A. Diaz-Papkovich, L. Anderson-Trocmé, and S. Gravel, “A review of umap in population genetics,” Journal of Human Genetics, vol. 66, no. 1, pp. 85–91, 2021.
  12. Q. Zhai and Z.-S. Ye, “Rul prediction of deteriorating products using an adaptive wiener process model,” IEEE Transactions on Industrial Informatics, vol. 13, no. 6, pp. 2911–2921, 2017.
  13. Y. Wen, J. Wu, Q. Zhou, and T.-L. Tseng, “Multiple-change-point modeling and exact bayesian inference of degradation signal for prognostic improvement,” IEEE Transactions on Automation Science and Engineering, vol. 16, no. 2, pp. 613–628, 2018.
  14. C. R. David et al., “Regression models and life tables (with discussion),” Journal of the Royal Statistical Society, vol. 34, no. 2, pp. 187–220, 1972.
  15. K. Liu, N. Z. Gebraeel, and J. Shi, “A data-level fusion model for developing composite health indices for degradation modeling and prognostic analysis,” IEEE Transactions on Automation Science and Engineering, vol. 10, no. 3, pp. 652–664, 2013.
  16. X.-S. Si, W. Wang, C.-H. Hu, and D.-H. Zhou, “Remaining useful life estimation – a review on the statistical data driven approaches,” European Journal of Operational Research, vol. 213, no. 1, pp. 1–14, 2011. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0377221710007903
  17. K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural networks, vol. 2, no. 5, pp. 359–366, 1989.
  18. S. Saon, T. Hiyama et al., “Predicting remaining useful life of rotating machinery based artificial neural network,” Computers & Mathematics with Applications, vol. 60, no. 4, pp. 1078–1087, 2010.
  19. G. Sateesh Babu, P. Zhao, and X.-L. Li, “Deep convolutional neural network based regression approach for estimation of remaining useful life,” in Database Systems for Advanced Applications: 21st International Conference, DASFAA 2016, Dallas, TX, USA, April 16-19, 2016, Proceedings, Part I 21.   Springer, 2016, pp. 214–228.
  20. X. Li, Q. Ding, and J.-Q. Sun, “Remaining useful life estimation in prognostics using deep convolution neural networks,” Reliability Engineering & System Safety, vol. 172, pp. 1–11, 2018.
  21. J. Zhu, N. Chen, and W. Peng, “Estimation of bearing remaining useful life based on multiscale convolutional neural network,” IEEE Transactions on Industrial Electronics, vol. 66, no. 4, pp. 3208–3216, 2019.
  22. L. Guo, N. Li, F. Jia, Y. Lei, and J. Lin, “A recurrent neural network based health indicator for remaining useful life prediction of bearings,” Neurocomputing, vol. 240, pp. 98–109, 2017.
  23. J. Zhang, P. Wang, R. Yan, and R. X. Gao, “Long short-term memory for machine remaining life prediction,” Journal of manufacturing systems, vol. 48, pp. 78–86, 2018.
  24. L. Liao, W. Jin, and R. Pavel, “Enhanced restricted boltzmann machine with prognosability regularization for prognostics and health assessment,” IEEE Transactions on Industrial Electronics, vol. 63, no. 11, pp. 7076–7083, 2016.
  25. C. Zhang, P. Lim, A. K. Qin, and K. C. Tan, “Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics,” IEEE transactions on neural networks and learning systems, vol. 28, no. 10, pp. 2306–2318, 2016.
  26. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in Neural Information Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30.   Curran Associates, Inc., 2017. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
  27. L.-K. Song, G.-C. Bai, and C.-W. Fei, “Multi-failure probabilistic design for turbine bladed disks using neural network regression with distributed collaborative strategy,” Aerospace Science and Technology, vol. 92, pp. 464–477, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1270963818327135
  28. L. McInnes, J. Healy, and J. Melville, “Umap: Uniform manifold approximation and projection for dimension reduction,” arXiv preprint arXiv:1802.03426, 2018.
  29. K. Pearson, “Liii. on lines and planes of closest fit to systems of points in space,” The London, Edinburgh, and Dublin philosophical magazine and journal of science, vol. 2, no. 11, pp. 559–572, 1901.
  30. H. Hotelling, “Analysis of a complex of statistical variables into principal components.” Journal of educational psychology, vol. 24, no. 6, p. 417, 1933.
  31. J. B. Tenenbaum, V. d. Silva, and J. C. Langford, “A global geometric framework for nonlinear dimensionality reduction,” science, vol. 290, no. 5500, pp. 2319–2323, 2000.
  32. L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal of machine learning research, vol. 9, no. 11, 2008.
  33. D. J. Berndt and J. Clifford, “Using dynamic time warping to find patterns in time series.” in KDD workshop, vol. 10, no. 16.   Seattle, WA, USA:, 1994, pp. 359–370.
  34. L.-H. Ren, Z.-F. Ye, and Y.-P. Zhao, “Long short-term memory neural network with scoring loss function for aero-engine remaining useful life estimation,” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 237, no. 3, pp. 547–560, 2023.
  35. A. Saxena, K. Goebel, D. Simon, and N. Eklund, “Damage propagation modeling for aircraft engine run-to-failure simulation,” in 2008 International Conference on Prognostics and Health Management, 2008, pp. 1–9.

Summary

We haven't generated a summary for this paper yet.