Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Electrically defined quantum dots for bosonic excitons (2402.19278v2)

Published 29 Feb 2024 in cond-mat.mes-hall and quant-ph

Abstract: Quantum dots are semiconductor nano-structures where particle motion is confined in all three spatial dimensions. Since their first experimental realization, nanocrystals confining the quanta of polarization waves, termed excitons, have found numerous applications in fields ranging from single photon sources for quantum information processing to commercial displays. A major limitation to further extending the range of potential applications has been the large inhomogeneity in, and lack-of tunability of, exciton energy that is generic to quantum dot materials. Here, we address this challenge by demonstrating electrically-defined quantum dots for excitons in monolayer semiconductors where the discrete exciton energies can be tuned using applied gate voltages. Resonance fluorescence measurements show strong spectral jumps and blinking of these resonances, verifying their zero-dimensional nature. Our work paves the way for realizing quantum confined bosonic modes where nonlinear response would arise exclusively from exciton--exciton interactions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (13)
  1. M. Combescot and S.-Y. Shiau, Excitons and Cooper Pairs (Oxford University Press, 2015).
  2. I. Aharonovich, D. Englund, and M. Toth, Solid-state single-photon emitters, Nature Photonics 10, 631 (2016).
  3. D. Thureja, Electrically tunable quantum confinement of neutral excitons, Doctoral Thesis, ETH Zurich (2023).
  4. See supplementary materials.
  5. K. Karrai and R. J. Warburton, Optical transmission and reflection spectroscopy of single quantum dots, Superlattices and Microstructures 33, 311 (2003).
  6. J. Wang, Highly Polarized Photoluminescence and Photodetection from Single Indium Phosphide Nanowires, Science 293, 1455 (2001).
  7. H. Akiyama, T. Someya, and H. Sakaki, Optical anisotropy in 5-nm-scale T-shaped quantum wires fabricated by the cleaved-edge overgrowth method, Physical Review B 53, R4229 (1996).
  8. S. A. Empedocles, D. J. Norris, and M. G. Bawendi, Photoluminescence spectroscopy of single cdse nanocrystallite quantum dots, Physical Review Letters 77, 3873 (1996).
  9. H. D. Robinson and B. B. Goldberg, Light-induced spectral diffusion in single self-assembled quantum dots, Physical Review B 61, R5086 (2000).
  10. R. Loudon, The quantum theory of light (OUP Oxford, 2000).
  11. H. J. Kimble, M. Dagenais, and L. Mandel, Photon antibunching in resonance fluorescence, Physical Review Letters 39, 691 (1977).
  12. A. Laturia, M. L. V. de Put, and W. G. Vandenberghe, Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk, npj 2D Materials and Applications 2, 10.1038/s41699-018-0050-x (2018).
  13. M. Koperski, K. Nogajewski, and M. Potemski, Single photon emitters in boron nitride: More than a supplementary material, Optics Communications 411, 158 (2018).
Citations (6)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com