Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Testing Environment Generation for Connected and Automated Vehicles with Dense Reinforcement Learning (2402.19275v1)

Published 29 Feb 2024 in eess.SY, cs.LG, and cs.SY

Abstract: The assessment of safety performance plays a pivotal role in the development and deployment of connected and automated vehicles (CAVs). A common approach involves designing testing scenarios based on prior knowledge of CAVs (e.g., surrogate models), conducting tests in these scenarios, and subsequently evaluating CAVs' safety performances. However, substantial differences between CAVs and the prior knowledge can significantly diminish the evaluation efficiency. In response to this issue, existing studies predominantly concentrate on the adaptive design of testing scenarios during the CAV testing process. Yet, these methods have limitations in their applicability to high-dimensional scenarios. To overcome this challenge, we develop an adaptive testing environment that bolsters evaluation robustness by incorporating multiple surrogate models and optimizing the combination coefficients of these surrogate models to enhance evaluation efficiency. We formulate the optimization problem as a regression task utilizing quadratic programming. To efficiently obtain the regression target via reinforcement learning, we propose the dense reinforcement learning method and devise a new adaptive policy with high sample efficiency. Essentially, our approach centers on learning the values of critical scenes displaying substantial surrogate-to-real gaps. The effectiveness of our method is validated in high-dimensional overtaking scenarios, demonstrating that our approach achieves notable evaluation efficiency.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. N. Kalra and S. M. Paddock, “Driving to safety: How many miles of driving would it take to demonstrate autonomous vehicle reliability?” Transportation Research Part A: Policy and Practice, vol. 94, pp. 182–193, 2016.
  2. S. Feng, H. Sun, X. Yan, H. Zhu, Z. Zou, S. Shen, and H. X. Liu, “Dense reinforcement learning for safety validation of autonomous vehicles,” Nature, vol. 615, no. 7953, pp. 620–627, 2023.
  3. X. Yan, Z. Zou, S. Feng, H. Zhu, H. Sun, and H. X. Liu, “Learning naturalistic driving environment with statistical realism,” Nature Communications, vol. 14, no. 1, p. 2037, 2023.
  4. H. Sun, S. Feng, X. Yan, and H. X. Liu, “Corner case generation and analysis for safety assessment of autonomous vehicles,” Transportation research record, vol. 2675, no. 11, pp. 587–600, 2021.
  5. S. Li, J. Yang, H. He, Y. Zhang, J. Hu, and S. Feng, “Few-shot scenario testing for autonomous vehicles based on neighborhood coverage and similarity,” arXiv preprint arXiv:2402.01795, 2024.
  6. A. Li, S. Chen, L. Sun, N. Zheng, M. Tomizuka, and W. Zhan, “Scegene: Bio-inspired traffic scenario generation for autonomous driving testing,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 9, pp. 14 859–14 874, 2021.
  7. J. Wang, A. Pun, J. Tu, S. Manivasagam, A. Sadat, S. Casas, M. Ren, and R. Urtasun, “Advsim: Generating safety-critical scenarios for self-driving vehicles,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 9909–9918.
  8. T. Menzel, G. Bagschik, and M. Maurer, “Scenarios for development, test and validation of automated vehicles,” in 2018 IEEE Intelligent Vehicles Symposium (IV).   IEEE, 2018, pp. 1821–1827.
  9. Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated testing of deep-neural-network-driven autonomous cars,” in Proceedings of the 40th International Conference on Software Engineering, 2018, pp. 303–314.
  10. D. Rempe, J. Philion, L. J. Guibas, S. Fidler, and O. Litany, “Generating useful accident-prone driving scenarios via a learned traffic prior,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 17 305–17 315.
  11. L. Li, W.-L. Huang, Y. Liu, N.-N. Zheng, and F.-Y. Wang, “Intelligence testing for autonomous vehicles: A new approach,” IEEE Transactions on Intelligent Vehicles, vol. 1, no. 2, pp. 158–166, 2016.
  12. L. Li, Y.-L. Lin, N.-N. Zheng, F.-Y. Wang, Y. Liu, D. Cao, K. Wang, and W.-L. Huang, “Artificial intelligence test: A case study of intelligent vehicles,” Artificial Intelligence Review, vol. 50, no. 3, pp. 441–465, 2018.
  13. L. Li, X. Wang, K. Wang, Y. Lin, J. Xin, L. Chen, L. Xu, B. Tian, Y. Ai, J. Wang, D. Cao, Y. Liu, C. Wang, N. Zheng, and F.-Y. Wang, “Parallel testing of vehicle intelligence via virtual-real interaction,” Science Robotics, vol. 4, no. 28, p. eaaw4106, 2019.
  14. S. Zhao, J. Duan, S. Wu, X. Gu, C. Li, K. Yin, and H. Wang, “Genetic algorithm-based sotif scenario construction for complex traffic flow,” Automotive Innovation, pp. 1–16, 2023.
  15. S. Riedmaier, T. Ponn, D. Ludwig, B. Schick, and F. Diermeyer, “Survey on scenario-based safety assessment of automated vehicles,” IEEE access, vol. 8, pp. 87 456–87 477, 2020.
  16. S. Feng, X. Yan, H. Sun, Y. Feng, and H. X. Liu, “Intelligent driving intelligence test for autonomous vehicles with naturalistic and adversarial environment,” Nature Communications, vol. 12, no. 1, pp. 1–14, 2021.
  17. S. Feng, Y. Feng, C. Yu, Y. Zhang, and H. X. Liu, “Testing scenario library generation for connected and automated vehicles, part i: Methodology,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 3, pp. 1573–1582, 2020.
  18. S. Feng, Y. Feng, H. Sun, S. Bao, Y. Zhang, and H. X. Liu, “Testing scenario library generation for connected and automated vehicles, part ii: Case studies,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 9, pp. 5635–5647, 2020.
  19. G. E. Mullins, P. G. Stankiewicz, R. C. Hawthorne, and S. K. Gupta, “Adaptive generation of challenging scenarios for testing and evaluation of autonomous vehicles,” Journal of Systems and Software, vol. 137, pp. 197–215, 2018.
  20. M. Koren, S. Alsaif, R. Lee, and M. J. Kochenderfer, “Adaptive stress testing for autonomous vehicles,” in 2018 IEEE Intelligent Vehicles Symposium (IV).   IEEE, 2018, pp. 1–7.
  21. S. Feng, Y. Feng, H. Sun, Y. Zhang, and H. X. Liu, “Testing scenario library generation for connected and automated vehicles: An adaptive framework,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 2, pp. 1213–1222, 2020.
  22. J. Sun, H. Zhou, H. Xi, H. Zhang, and Y. Tian, “Adaptive design of experiments for safety evaluation of automated vehicles,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 9, pp. 14 497–14 508, 2021.
  23. J. Yang, H. He, Y. Zhang, S. Feng, and H. X. Liu, “Adaptive testing for connected and automated vehicles with sparse control variates in overtaking scenarios,” in 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC).   IEEE, 2022, pp. 2791–2797.
  24. X. Gong, S. Feng, and Y. Pan, “An adaptive multi-fidelity sampling framework for safety analysis of connected and automated vehicles,” IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 12, pp. 14 393–14 405, 2023.
  25. J. Yang, H. Sun, H. He, Y. Zhang, H. X. Liu, and S. Feng, “Adaptive safety evaluation for connected and automated vehicles with sparse control variates,” IEEE Transactions on Intelligent Transportation Systems, vol. 25, no. 2, pp. 1761–1773, 2023.
  26. H. X. Liu and S. Feng, “Curse of rarity for autonomous vehicles,” arXiv preprint arXiv:2207.02749, 2022.
  27. S. Feng, Y. Feng, X. Yan, S. Shen, S. Xu, and H. X. Liu, “Safety assessment of highly automated driving systems in test tracks: A new framework,” Accident Analysis & Prevention, vol. 144, p. 105664, 2020.
  28. D. Zhao, H. Lam, H. Peng, S. Bao, D. J. LeBlanc, K. Nobukawa, and C. S. Pan, “Accelerated evaluation of automated vehicles safety in lane-change scenarios based on importance sampling techniques,” IEEE Transactions on Intelligent Transportation Systems, vol. 18, no. 3, pp. 595–607, 2016.
  29. D. Zhao, X. Huang, H. Peng, H. Lam, and D. J. LeBlanc, “Accelerated evaluation of automated vehicles in car-following maneuvers,” IEEE Transactions on Intelligent Transportation Systems, vol. 19, no. 3, pp. 733–744, 2017.
  30. S.-K. Au and J. Beck, “Important sampling in high dimensions,” Structural safety, vol. 25, no. 2, pp. 139–163, 2003.
  31. D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot et al., “Mastering the game of go with deep neural networks and tree search,” nature, vol. 529, no. 7587, pp. 484–489, 2016.
  32. M. Andersen, J. Dahl, and L. Vandenberghe, “Cvxopt: Python software for convex optimization, version 1.3.2,” Available at https://cvxopt.org, 2004.
  33. T. Jaakkola, M. Jordan, and S. Singh, “Convergence of stochastic iterative dynamic programming algorithms,” Advances in neural information processing systems, vol. 6, 1993.
  34. F. S. Melo, “Convergence of q-learning: A simple proof,” Institute Of Systems and Robotics, Tech. Rep, pp. 1–4, 2001.
  35. J. W. Ro, P. S. Roop, A. Malik, and P. Ranjitkar, “A formal approach for modeling and simulation of human car-following behavior,” IEEE Transactions on Intelligent Transportation Systems, vol. 19, no. 2, pp. 639–648, 2017.
  36. J. Sangster, H. Rakha, and J. Du, “Application of naturalistic driving data to modeling of driver car-following behavior,” Transportation research record, vol. 2390, no. 1, pp. 20–33, 2013.
  37. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.
Citations (1)

Summary

We haven't generated a summary for this paper yet.