ARMCHAIR: integrated inverse reinforcement learning and model predictive control for human-robot collaboration (2402.19128v1)
Abstract: One of the key issues in human-robot collaboration is the development of computational models that allow robots to predict and adapt to human behavior. Much progress has been achieved in developing such models, as well as control techniques that address the autonomy problems of motion planning and decision-making in robotics. However, the integration of computational models of human behavior with such control techniques still poses a major challenge, resulting in a bottleneck for efficient collaborative human-robot teams. In this context, we present a novel architecture for human-robot collaboration: Adaptive Robot Motion for Collaboration with Humans using Adversarial Inverse Reinforcement learning (ARMCHAIR). Our solution leverages adversarial inverse reinforcement learning and model predictive control to compute optimal trajectories and decisions for a mobile multi-robot system that collaborates with a human in an exploration task. During the mission, ARMCHAIR operates without human intervention, autonomously identifying the necessity to support and acting accordingly. Our approach also explicitly addresses the network connectivity requirement of the human-robot team. Extensive simulation-based evaluations demonstrate that ARMCHAIR allows a group of robots to safely support a simulated human in an exploration scenario, preventing collisions and network disconnections, and improving the overall performance of the task.
- Control for Societal-scale Challenges: Road Map 2030 (IEEE Control Systems Society Publication, 2023). [2] Liang, C.-J., Wang, X., Kamat, V. R. & Menassa, C. C. Human–robot collaboration in construction: Classification and research trends. Journal of Construction Engineering and Management 147, 03121006 (2021). [3] Gervasi, R., Barravecchia, F., Mastrogiacomo, L. & Franceschini, F. Applications of affective computing in human-robot interaction: State-of-art and challenges for manufacturing. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 237, 815–832 (2023). [4] Mavrogiannis, C. et al. Core challenges of social robot navigation: A survey. J. Hum.-Robot Interact. 12 (2023). [5] Caregnato-Neto, A., Maximo, M. R. O. A. & Afonso, R. J. M. Real-time motion planning and decision-making for a group of differential drive robots under connectivity constraints using robust MPC and mixed-integer programming. Advanced Robotics 37, 356–379 (2023). [6] Ozkan, M. F. & Ma, Y. Distributed stochastic model predictive control for human-leading heavy-duty truck platoon. IEEE Transactions on Intelligent Transportation Systems 23, 16059–16071 (2022). [7] Zhu, H., Claramunt, F. M., Brito, B. & Alonso-Mora, J. Learning interaction-aware trajectory predictions for decentralized multi-robot motion planning in dynamic environments. IEEE Robotics and Automation Letters 6, 2256–2263 (2021). [8] Camacho, E. F., Bordons, C., Camacho, E. F. & Bordons, C. Model predictive controllers (Springer, 2007). [9] Liu, Y., Liu, K., Wang, G., Sun, Z. & Jin, L. Noise-tolerant zeroing neurodynamic algorithm for upper limb motion intention-based human–robot interaction control in non-ideal conditions. Expert Systems with Applications 213, 118891 (2023). [10] Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Liang, C.-J., Wang, X., Kamat, V. R. & Menassa, C. C. Human–robot collaboration in construction: Classification and research trends. Journal of Construction Engineering and Management 147, 03121006 (2021). [3] Gervasi, R., Barravecchia, F., Mastrogiacomo, L. & Franceschini, F. Applications of affective computing in human-robot interaction: State-of-art and challenges for manufacturing. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 237, 815–832 (2023). [4] Mavrogiannis, C. et al. Core challenges of social robot navigation: A survey. J. Hum.-Robot Interact. 12 (2023). [5] Caregnato-Neto, A., Maximo, M. R. O. A. & Afonso, R. J. M. Real-time motion planning and decision-making for a group of differential drive robots under connectivity constraints using robust MPC and mixed-integer programming. Advanced Robotics 37, 356–379 (2023). [6] Ozkan, M. F. & Ma, Y. Distributed stochastic model predictive control for human-leading heavy-duty truck platoon. IEEE Transactions on Intelligent Transportation Systems 23, 16059–16071 (2022). [7] Zhu, H., Claramunt, F. M., Brito, B. & Alonso-Mora, J. Learning interaction-aware trajectory predictions for decentralized multi-robot motion planning in dynamic environments. IEEE Robotics and Automation Letters 6, 2256–2263 (2021). [8] Camacho, E. F., Bordons, C., Camacho, E. F. & Bordons, C. Model predictive controllers (Springer, 2007). [9] Liu, Y., Liu, K., Wang, G., Sun, Z. & Jin, L. Noise-tolerant zeroing neurodynamic algorithm for upper limb motion intention-based human–robot interaction control in non-ideal conditions. Expert Systems with Applications 213, 118891 (2023). [10] Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Gervasi, R., Barravecchia, F., Mastrogiacomo, L. & Franceschini, F. Applications of affective computing in human-robot interaction: State-of-art and challenges for manufacturing. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 237, 815–832 (2023). [4] Mavrogiannis, C. et al. Core challenges of social robot navigation: A survey. J. Hum.-Robot Interact. 12 (2023). [5] Caregnato-Neto, A., Maximo, M. R. O. A. & Afonso, R. J. M. Real-time motion planning and decision-making for a group of differential drive robots under connectivity constraints using robust MPC and mixed-integer programming. Advanced Robotics 37, 356–379 (2023). [6] Ozkan, M. F. & Ma, Y. Distributed stochastic model predictive control for human-leading heavy-duty truck platoon. IEEE Transactions on Intelligent Transportation Systems 23, 16059–16071 (2022). [7] Zhu, H., Claramunt, F. M., Brito, B. & Alonso-Mora, J. Learning interaction-aware trajectory predictions for decentralized multi-robot motion planning in dynamic environments. IEEE Robotics and Automation Letters 6, 2256–2263 (2021). [8] Camacho, E. F., Bordons, C., Camacho, E. F. & Bordons, C. Model predictive controllers (Springer, 2007). [9] Liu, Y., Liu, K., Wang, G., Sun, Z. & Jin, L. Noise-tolerant zeroing neurodynamic algorithm for upper limb motion intention-based human–robot interaction control in non-ideal conditions. Expert Systems with Applications 213, 118891 (2023). [10] Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Mavrogiannis, C. et al. Core challenges of social robot navigation: A survey. J. Hum.-Robot Interact. 12 (2023). [5] Caregnato-Neto, A., Maximo, M. R. O. A. & Afonso, R. J. M. Real-time motion planning and decision-making for a group of differential drive robots under connectivity constraints using robust MPC and mixed-integer programming. Advanced Robotics 37, 356–379 (2023). [6] Ozkan, M. F. & Ma, Y. Distributed stochastic model predictive control for human-leading heavy-duty truck platoon. IEEE Transactions on Intelligent Transportation Systems 23, 16059–16071 (2022). [7] Zhu, H., Claramunt, F. M., Brito, B. & Alonso-Mora, J. Learning interaction-aware trajectory predictions for decentralized multi-robot motion planning in dynamic environments. IEEE Robotics and Automation Letters 6, 2256–2263 (2021). [8] Camacho, E. F., Bordons, C., Camacho, E. F. & Bordons, C. Model predictive controllers (Springer, 2007). [9] Liu, Y., Liu, K., Wang, G., Sun, Z. & Jin, L. Noise-tolerant zeroing neurodynamic algorithm for upper limb motion intention-based human–robot interaction control in non-ideal conditions. Expert Systems with Applications 213, 118891 (2023). [10] Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Caregnato-Neto, A., Maximo, M. R. O. A. & Afonso, R. J. M. Real-time motion planning and decision-making for a group of differential drive robots under connectivity constraints using robust MPC and mixed-integer programming. Advanced Robotics 37, 356–379 (2023). [6] Ozkan, M. F. & Ma, Y. Distributed stochastic model predictive control for human-leading heavy-duty truck platoon. IEEE Transactions on Intelligent Transportation Systems 23, 16059–16071 (2022). [7] Zhu, H., Claramunt, F. M., Brito, B. & Alonso-Mora, J. Learning interaction-aware trajectory predictions for decentralized multi-robot motion planning in dynamic environments. IEEE Robotics and Automation Letters 6, 2256–2263 (2021). [8] Camacho, E. F., Bordons, C., Camacho, E. F. & Bordons, C. Model predictive controllers (Springer, 2007). [9] Liu, Y., Liu, K., Wang, G., Sun, Z. & Jin, L. Noise-tolerant zeroing neurodynamic algorithm for upper limb motion intention-based human–robot interaction control in non-ideal conditions. Expert Systems with Applications 213, 118891 (2023). [10] Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ozkan, M. F. & Ma, Y. Distributed stochastic model predictive control for human-leading heavy-duty truck platoon. IEEE Transactions on Intelligent Transportation Systems 23, 16059–16071 (2022). [7] Zhu, H., Claramunt, F. M., Brito, B. & Alonso-Mora, J. Learning interaction-aware trajectory predictions for decentralized multi-robot motion planning in dynamic environments. IEEE Robotics and Automation Letters 6, 2256–2263 (2021). [8] Camacho, E. F., Bordons, C., Camacho, E. F. & Bordons, C. Model predictive controllers (Springer, 2007). [9] Liu, Y., Liu, K., Wang, G., Sun, Z. & Jin, L. Noise-tolerant zeroing neurodynamic algorithm for upper limb motion intention-based human–robot interaction control in non-ideal conditions. Expert Systems with Applications 213, 118891 (2023). [10] Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Zhu, H., Claramunt, F. M., Brito, B. & Alonso-Mora, J. Learning interaction-aware trajectory predictions for decentralized multi-robot motion planning in dynamic environments. IEEE Robotics and Automation Letters 6, 2256–2263 (2021). [8] Camacho, E. F., Bordons, C., Camacho, E. F. & Bordons, C. Model predictive controllers (Springer, 2007). [9] Liu, Y., Liu, K., Wang, G., Sun, Z. & Jin, L. Noise-tolerant zeroing neurodynamic algorithm for upper limb motion intention-based human–robot interaction control in non-ideal conditions. Expert Systems with Applications 213, 118891 (2023). [10] Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Camacho, E. F., Bordons, C., Camacho, E. F. & Bordons, C. Model predictive controllers (Springer, 2007). [9] Liu, Y., Liu, K., Wang, G., Sun, Z. & Jin, L. Noise-tolerant zeroing neurodynamic algorithm for upper limb motion intention-based human–robot interaction control in non-ideal conditions. Expert Systems with Applications 213, 118891 (2023). [10] Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Liu, Y., Liu, K., Wang, G., Sun, Z. & Jin, L. Noise-tolerant zeroing neurodynamic algorithm for upper limb motion intention-based human–robot interaction control in non-ideal conditions. Expert Systems with Applications 213, 118891 (2023). [10] Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022).
- Human–robot collaboration in construction: Classification and research trends. Journal of Construction Engineering and Management 147, 03121006 (2021). [3] Gervasi, R., Barravecchia, F., Mastrogiacomo, L. & Franceschini, F. Applications of affective computing in human-robot interaction: State-of-art and challenges for manufacturing. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 237, 815–832 (2023). [4] Mavrogiannis, C. et al. Core challenges of social robot navigation: A survey. J. Hum.-Robot Interact. 12 (2023). [5] Caregnato-Neto, A., Maximo, M. R. O. A. & Afonso, R. J. M. Real-time motion planning and decision-making for a group of differential drive robots under connectivity constraints using robust MPC and mixed-integer programming. Advanced Robotics 37, 356–379 (2023). [6] Ozkan, M. F. & Ma, Y. Distributed stochastic model predictive control for human-leading heavy-duty truck platoon. IEEE Transactions on Intelligent Transportation Systems 23, 16059–16071 (2022). [7] Zhu, H., Claramunt, F. M., Brito, B. & Alonso-Mora, J. Learning interaction-aware trajectory predictions for decentralized multi-robot motion planning in dynamic environments. IEEE Robotics and Automation Letters 6, 2256–2263 (2021). [8] Camacho, E. F., Bordons, C., Camacho, E. F. & Bordons, C. Model predictive controllers (Springer, 2007). [9] Liu, Y., Liu, K., Wang, G., Sun, Z. & Jin, L. Noise-tolerant zeroing neurodynamic algorithm for upper limb motion intention-based human–robot interaction control in non-ideal conditions. Expert Systems with Applications 213, 118891 (2023). [10] Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Gervasi, R., Barravecchia, F., Mastrogiacomo, L. & Franceschini, F. Applications of affective computing in human-robot interaction: State-of-art and challenges for manufacturing. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 237, 815–832 (2023). [4] Mavrogiannis, C. et al. Core challenges of social robot navigation: A survey. J. Hum.-Robot Interact. 12 (2023). [5] Caregnato-Neto, A., Maximo, M. R. O. A. & Afonso, R. J. M. Real-time motion planning and decision-making for a group of differential drive robots under connectivity constraints using robust MPC and mixed-integer programming. Advanced Robotics 37, 356–379 (2023). [6] Ozkan, M. F. & Ma, Y. Distributed stochastic model predictive control for human-leading heavy-duty truck platoon. IEEE Transactions on Intelligent Transportation Systems 23, 16059–16071 (2022). [7] Zhu, H., Claramunt, F. M., Brito, B. & Alonso-Mora, J. Learning interaction-aware trajectory predictions for decentralized multi-robot motion planning in dynamic environments. IEEE Robotics and Automation Letters 6, 2256–2263 (2021). [8] Camacho, E. F., Bordons, C., Camacho, E. F. & Bordons, C. Model predictive controllers (Springer, 2007). [9] Liu, Y., Liu, K., Wang, G., Sun, Z. & Jin, L. Noise-tolerant zeroing neurodynamic algorithm for upper limb motion intention-based human–robot interaction control in non-ideal conditions. Expert Systems with Applications 213, 118891 (2023). [10] Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Mavrogiannis, C. et al. Core challenges of social robot navigation: A survey. J. Hum.-Robot Interact. 12 (2023). [5] Caregnato-Neto, A., Maximo, M. R. O. A. & Afonso, R. J. M. Real-time motion planning and decision-making for a group of differential drive robots under connectivity constraints using robust MPC and mixed-integer programming. Advanced Robotics 37, 356–379 (2023). [6] Ozkan, M. F. & Ma, Y. Distributed stochastic model predictive control for human-leading heavy-duty truck platoon. IEEE Transactions on Intelligent Transportation Systems 23, 16059–16071 (2022). [7] Zhu, H., Claramunt, F. M., Brito, B. & Alonso-Mora, J. Learning interaction-aware trajectory predictions for decentralized multi-robot motion planning in dynamic environments. IEEE Robotics and Automation Letters 6, 2256–2263 (2021). [8] Camacho, E. F., Bordons, C., Camacho, E. F. & Bordons, C. Model predictive controllers (Springer, 2007). [9] Liu, Y., Liu, K., Wang, G., Sun, Z. & Jin, L. Noise-tolerant zeroing neurodynamic algorithm for upper limb motion intention-based human–robot interaction control in non-ideal conditions. Expert Systems with Applications 213, 118891 (2023). [10] Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Caregnato-Neto, A., Maximo, M. R. O. A. & Afonso, R. J. M. Real-time motion planning and decision-making for a group of differential drive robots under connectivity constraints using robust MPC and mixed-integer programming. Advanced Robotics 37, 356–379 (2023). [6] Ozkan, M. F. & Ma, Y. Distributed stochastic model predictive control for human-leading heavy-duty truck platoon. IEEE Transactions on Intelligent Transportation Systems 23, 16059–16071 (2022). [7] Zhu, H., Claramunt, F. M., Brito, B. & Alonso-Mora, J. Learning interaction-aware trajectory predictions for decentralized multi-robot motion planning in dynamic environments. IEEE Robotics and Automation Letters 6, 2256–2263 (2021). [8] Camacho, E. F., Bordons, C., Camacho, E. F. & Bordons, C. Model predictive controllers (Springer, 2007). [9] Liu, Y., Liu, K., Wang, G., Sun, Z. & Jin, L. Noise-tolerant zeroing neurodynamic algorithm for upper limb motion intention-based human–robot interaction control in non-ideal conditions. Expert Systems with Applications 213, 118891 (2023). [10] Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ozkan, M. F. & Ma, Y. Distributed stochastic model predictive control for human-leading heavy-duty truck platoon. IEEE Transactions on Intelligent Transportation Systems 23, 16059–16071 (2022). [7] Zhu, H., Claramunt, F. M., Brito, B. & Alonso-Mora, J. Learning interaction-aware trajectory predictions for decentralized multi-robot motion planning in dynamic environments. IEEE Robotics and Automation Letters 6, 2256–2263 (2021). [8] Camacho, E. F., Bordons, C., Camacho, E. F. & Bordons, C. Model predictive controllers (Springer, 2007). [9] Liu, Y., Liu, K., Wang, G., Sun, Z. & Jin, L. Noise-tolerant zeroing neurodynamic algorithm for upper limb motion intention-based human–robot interaction control in non-ideal conditions. Expert Systems with Applications 213, 118891 (2023). [10] Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Zhu, H., Claramunt, F. M., Brito, B. & Alonso-Mora, J. Learning interaction-aware trajectory predictions for decentralized multi-robot motion planning in dynamic environments. IEEE Robotics and Automation Letters 6, 2256–2263 (2021). [8] Camacho, E. F., Bordons, C., Camacho, E. F. & Bordons, C. Model predictive controllers (Springer, 2007). [9] Liu, Y., Liu, K., Wang, G., Sun, Z. & Jin, L. Noise-tolerant zeroing neurodynamic algorithm for upper limb motion intention-based human–robot interaction control in non-ideal conditions. Expert Systems with Applications 213, 118891 (2023). [10] Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Camacho, E. F., Bordons, C., Camacho, E. F. & Bordons, C. Model predictive controllers (Springer, 2007). [9] Liu, Y., Liu, K., Wang, G., Sun, Z. & Jin, L. Noise-tolerant zeroing neurodynamic algorithm for upper limb motion intention-based human–robot interaction control in non-ideal conditions. Expert Systems with Applications 213, 118891 (2023). [10] Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Liu, Y., Liu, K., Wang, G., Sun, Z. & Jin, L. Noise-tolerant zeroing neurodynamic algorithm for upper limb motion intention-based human–robot interaction control in non-ideal conditions. Expert Systems with Applications 213, 118891 (2023). [10] Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022).
- Applications of affective computing in human-robot interaction: State-of-art and challenges for manufacturing. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 237, 815–832 (2023). [4] Mavrogiannis, C. et al. Core challenges of social robot navigation: A survey. J. Hum.-Robot Interact. 12 (2023). [5] Caregnato-Neto, A., Maximo, M. R. O. A. & Afonso, R. J. M. Real-time motion planning and decision-making for a group of differential drive robots under connectivity constraints using robust MPC and mixed-integer programming. Advanced Robotics 37, 356–379 (2023). [6] Ozkan, M. F. & Ma, Y. Distributed stochastic model predictive control for human-leading heavy-duty truck platoon. IEEE Transactions on Intelligent Transportation Systems 23, 16059–16071 (2022). [7] Zhu, H., Claramunt, F. M., Brito, B. & Alonso-Mora, J. Learning interaction-aware trajectory predictions for decentralized multi-robot motion planning in dynamic environments. IEEE Robotics and Automation Letters 6, 2256–2263 (2021). [8] Camacho, E. F., Bordons, C., Camacho, E. F. & Bordons, C. Model predictive controllers (Springer, 2007). [9] Liu, Y., Liu, K., Wang, G., Sun, Z. & Jin, L. Noise-tolerant zeroing neurodynamic algorithm for upper limb motion intention-based human–robot interaction control in non-ideal conditions. Expert Systems with Applications 213, 118891 (2023). [10] Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Mavrogiannis, C. et al. Core challenges of social robot navigation: A survey. J. Hum.-Robot Interact. 12 (2023). [5] Caregnato-Neto, A., Maximo, M. R. O. A. & Afonso, R. J. M. Real-time motion planning and decision-making for a group of differential drive robots under connectivity constraints using robust MPC and mixed-integer programming. Advanced Robotics 37, 356–379 (2023). [6] Ozkan, M. F. & Ma, Y. Distributed stochastic model predictive control for human-leading heavy-duty truck platoon. IEEE Transactions on Intelligent Transportation Systems 23, 16059–16071 (2022). [7] Zhu, H., Claramunt, F. M., Brito, B. & Alonso-Mora, J. Learning interaction-aware trajectory predictions for decentralized multi-robot motion planning in dynamic environments. IEEE Robotics and Automation Letters 6, 2256–2263 (2021). [8] Camacho, E. F., Bordons, C., Camacho, E. F. & Bordons, C. Model predictive controllers (Springer, 2007). [9] Liu, Y., Liu, K., Wang, G., Sun, Z. & Jin, L. Noise-tolerant zeroing neurodynamic algorithm for upper limb motion intention-based human–robot interaction control in non-ideal conditions. Expert Systems with Applications 213, 118891 (2023). [10] Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Caregnato-Neto, A., Maximo, M. R. O. A. & Afonso, R. J. M. Real-time motion planning and decision-making for a group of differential drive robots under connectivity constraints using robust MPC and mixed-integer programming. Advanced Robotics 37, 356–379 (2023). [6] Ozkan, M. F. & Ma, Y. Distributed stochastic model predictive control for human-leading heavy-duty truck platoon. IEEE Transactions on Intelligent Transportation Systems 23, 16059–16071 (2022). [7] Zhu, H., Claramunt, F. M., Brito, B. & Alonso-Mora, J. Learning interaction-aware trajectory predictions for decentralized multi-robot motion planning in dynamic environments. IEEE Robotics and Automation Letters 6, 2256–2263 (2021). [8] Camacho, E. F., Bordons, C., Camacho, E. F. & Bordons, C. Model predictive controllers (Springer, 2007). [9] Liu, Y., Liu, K., Wang, G., Sun, Z. & Jin, L. Noise-tolerant zeroing neurodynamic algorithm for upper limb motion intention-based human–robot interaction control in non-ideal conditions. Expert Systems with Applications 213, 118891 (2023). [10] Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ozkan, M. F. & Ma, Y. Distributed stochastic model predictive control for human-leading heavy-duty truck platoon. IEEE Transactions on Intelligent Transportation Systems 23, 16059–16071 (2022). [7] Zhu, H., Claramunt, F. M., Brito, B. & Alonso-Mora, J. Learning interaction-aware trajectory predictions for decentralized multi-robot motion planning in dynamic environments. IEEE Robotics and Automation Letters 6, 2256–2263 (2021). [8] Camacho, E. F., Bordons, C., Camacho, E. F. & Bordons, C. Model predictive controllers (Springer, 2007). [9] Liu, Y., Liu, K., Wang, G., Sun, Z. & Jin, L. Noise-tolerant zeroing neurodynamic algorithm for upper limb motion intention-based human–robot interaction control in non-ideal conditions. Expert Systems with Applications 213, 118891 (2023). [10] Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Zhu, H., Claramunt, F. M., Brito, B. & Alonso-Mora, J. Learning interaction-aware trajectory predictions for decentralized multi-robot motion planning in dynamic environments. IEEE Robotics and Automation Letters 6, 2256–2263 (2021). [8] Camacho, E. F., Bordons, C., Camacho, E. F. & Bordons, C. Model predictive controllers (Springer, 2007). [9] Liu, Y., Liu, K., Wang, G., Sun, Z. & Jin, L. Noise-tolerant zeroing neurodynamic algorithm for upper limb motion intention-based human–robot interaction control in non-ideal conditions. Expert Systems with Applications 213, 118891 (2023). [10] Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Camacho, E. F., Bordons, C., Camacho, E. F. & Bordons, C. Model predictive controllers (Springer, 2007). [9] Liu, Y., Liu, K., Wang, G., Sun, Z. & Jin, L. Noise-tolerant zeroing neurodynamic algorithm for upper limb motion intention-based human–robot interaction control in non-ideal conditions. Expert Systems with Applications 213, 118891 (2023). [10] Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Liu, Y., Liu, K., Wang, G., Sun, Z. & Jin, L. Noise-tolerant zeroing neurodynamic algorithm for upper limb motion intention-based human–robot interaction control in non-ideal conditions. Expert Systems with Applications 213, 118891 (2023). [10] Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022).
- Mavrogiannis, C. et al. Core challenges of social robot navigation: A survey. J. Hum.-Robot Interact. 12 (2023). [5] Caregnato-Neto, A., Maximo, M. R. O. A. & Afonso, R. J. M. Real-time motion planning and decision-making for a group of differential drive robots under connectivity constraints using robust MPC and mixed-integer programming. Advanced Robotics 37, 356–379 (2023). [6] Ozkan, M. F. & Ma, Y. Distributed stochastic model predictive control for human-leading heavy-duty truck platoon. IEEE Transactions on Intelligent Transportation Systems 23, 16059–16071 (2022). [7] Zhu, H., Claramunt, F. M., Brito, B. & Alonso-Mora, J. Learning interaction-aware trajectory predictions for decentralized multi-robot motion planning in dynamic environments. IEEE Robotics and Automation Letters 6, 2256–2263 (2021). [8] Camacho, E. F., Bordons, C., Camacho, E. F. & Bordons, C. Model predictive controllers (Springer, 2007). [9] Liu, Y., Liu, K., Wang, G., Sun, Z. & Jin, L. Noise-tolerant zeroing neurodynamic algorithm for upper limb motion intention-based human–robot interaction control in non-ideal conditions. Expert Systems with Applications 213, 118891 (2023). [10] Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Caregnato-Neto, A., Maximo, M. R. O. A. & Afonso, R. J. M. Real-time motion planning and decision-making for a group of differential drive robots under connectivity constraints using robust MPC and mixed-integer programming. Advanced Robotics 37, 356–379 (2023). [6] Ozkan, M. F. & Ma, Y. Distributed stochastic model predictive control for human-leading heavy-duty truck platoon. IEEE Transactions on Intelligent Transportation Systems 23, 16059–16071 (2022). [7] Zhu, H., Claramunt, F. M., Brito, B. & Alonso-Mora, J. Learning interaction-aware trajectory predictions for decentralized multi-robot motion planning in dynamic environments. IEEE Robotics and Automation Letters 6, 2256–2263 (2021). [8] Camacho, E. F., Bordons, C., Camacho, E. F. & Bordons, C. Model predictive controllers (Springer, 2007). [9] Liu, Y., Liu, K., Wang, G., Sun, Z. & Jin, L. Noise-tolerant zeroing neurodynamic algorithm for upper limb motion intention-based human–robot interaction control in non-ideal conditions. Expert Systems with Applications 213, 118891 (2023). [10] Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ozkan, M. F. & Ma, Y. Distributed stochastic model predictive control for human-leading heavy-duty truck platoon. IEEE Transactions on Intelligent Transportation Systems 23, 16059–16071 (2022). [7] Zhu, H., Claramunt, F. M., Brito, B. & Alonso-Mora, J. Learning interaction-aware trajectory predictions for decentralized multi-robot motion planning in dynamic environments. IEEE Robotics and Automation Letters 6, 2256–2263 (2021). [8] Camacho, E. F., Bordons, C., Camacho, E. F. & Bordons, C. Model predictive controllers (Springer, 2007). [9] Liu, Y., Liu, K., Wang, G., Sun, Z. & Jin, L. Noise-tolerant zeroing neurodynamic algorithm for upper limb motion intention-based human–robot interaction control in non-ideal conditions. Expert Systems with Applications 213, 118891 (2023). [10] Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Zhu, H., Claramunt, F. M., Brito, B. & Alonso-Mora, J. Learning interaction-aware trajectory predictions for decentralized multi-robot motion planning in dynamic environments. IEEE Robotics and Automation Letters 6, 2256–2263 (2021). [8] Camacho, E. F., Bordons, C., Camacho, E. F. & Bordons, C. Model predictive controllers (Springer, 2007). [9] Liu, Y., Liu, K., Wang, G., Sun, Z. & Jin, L. Noise-tolerant zeroing neurodynamic algorithm for upper limb motion intention-based human–robot interaction control in non-ideal conditions. Expert Systems with Applications 213, 118891 (2023). [10] Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Camacho, E. F., Bordons, C., Camacho, E. F. & Bordons, C. Model predictive controllers (Springer, 2007). [9] Liu, Y., Liu, K., Wang, G., Sun, Z. & Jin, L. Noise-tolerant zeroing neurodynamic algorithm for upper limb motion intention-based human–robot interaction control in non-ideal conditions. Expert Systems with Applications 213, 118891 (2023). [10] Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Liu, Y., Liu, K., Wang, G., Sun, Z. & Jin, L. Noise-tolerant zeroing neurodynamic algorithm for upper limb motion intention-based human–robot interaction control in non-ideal conditions. Expert Systems with Applications 213, 118891 (2023). [10] Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022).
- Real-time motion planning and decision-making for a group of differential drive robots under connectivity constraints using robust MPC and mixed-integer programming. Advanced Robotics 37, 356–379 (2023). [6] Ozkan, M. F. & Ma, Y. Distributed stochastic model predictive control for human-leading heavy-duty truck platoon. IEEE Transactions on Intelligent Transportation Systems 23, 16059–16071 (2022). [7] Zhu, H., Claramunt, F. M., Brito, B. & Alonso-Mora, J. Learning interaction-aware trajectory predictions for decentralized multi-robot motion planning in dynamic environments. IEEE Robotics and Automation Letters 6, 2256–2263 (2021). [8] Camacho, E. F., Bordons, C., Camacho, E. F. & Bordons, C. Model predictive controllers (Springer, 2007). [9] Liu, Y., Liu, K., Wang, G., Sun, Z. & Jin, L. Noise-tolerant zeroing neurodynamic algorithm for upper limb motion intention-based human–robot interaction control in non-ideal conditions. Expert Systems with Applications 213, 118891 (2023). [10] Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ozkan, M. F. & Ma, Y. Distributed stochastic model predictive control for human-leading heavy-duty truck platoon. IEEE Transactions on Intelligent Transportation Systems 23, 16059–16071 (2022). [7] Zhu, H., Claramunt, F. M., Brito, B. & Alonso-Mora, J. Learning interaction-aware trajectory predictions for decentralized multi-robot motion planning in dynamic environments. IEEE Robotics and Automation Letters 6, 2256–2263 (2021). [8] Camacho, E. F., Bordons, C., Camacho, E. F. & Bordons, C. Model predictive controllers (Springer, 2007). [9] Liu, Y., Liu, K., Wang, G., Sun, Z. & Jin, L. Noise-tolerant zeroing neurodynamic algorithm for upper limb motion intention-based human–robot interaction control in non-ideal conditions. Expert Systems with Applications 213, 118891 (2023). [10] Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Zhu, H., Claramunt, F. M., Brito, B. & Alonso-Mora, J. Learning interaction-aware trajectory predictions for decentralized multi-robot motion planning in dynamic environments. IEEE Robotics and Automation Letters 6, 2256–2263 (2021). [8] Camacho, E. F., Bordons, C., Camacho, E. F. & Bordons, C. Model predictive controllers (Springer, 2007). [9] Liu, Y., Liu, K., Wang, G., Sun, Z. & Jin, L. Noise-tolerant zeroing neurodynamic algorithm for upper limb motion intention-based human–robot interaction control in non-ideal conditions. Expert Systems with Applications 213, 118891 (2023). [10] Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Camacho, E. F., Bordons, C., Camacho, E. F. & Bordons, C. Model predictive controllers (Springer, 2007). [9] Liu, Y., Liu, K., Wang, G., Sun, Z. & Jin, L. Noise-tolerant zeroing neurodynamic algorithm for upper limb motion intention-based human–robot interaction control in non-ideal conditions. Expert Systems with Applications 213, 118891 (2023). [10] Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Liu, Y., Liu, K., Wang, G., Sun, Z. & Jin, L. Noise-tolerant zeroing neurodynamic algorithm for upper limb motion intention-based human–robot interaction control in non-ideal conditions. Expert Systems with Applications 213, 118891 (2023). [10] Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022).
- Distributed stochastic model predictive control for human-leading heavy-duty truck platoon. IEEE Transactions on Intelligent Transportation Systems 23, 16059–16071 (2022). [7] Zhu, H., Claramunt, F. M., Brito, B. & Alonso-Mora, J. Learning interaction-aware trajectory predictions for decentralized multi-robot motion planning in dynamic environments. IEEE Robotics and Automation Letters 6, 2256–2263 (2021). [8] Camacho, E. F., Bordons, C., Camacho, E. F. & Bordons, C. Model predictive controllers (Springer, 2007). [9] Liu, Y., Liu, K., Wang, G., Sun, Z. & Jin, L. Noise-tolerant zeroing neurodynamic algorithm for upper limb motion intention-based human–robot interaction control in non-ideal conditions. Expert Systems with Applications 213, 118891 (2023). [10] Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Zhu, H., Claramunt, F. M., Brito, B. & Alonso-Mora, J. Learning interaction-aware trajectory predictions for decentralized multi-robot motion planning in dynamic environments. IEEE Robotics and Automation Letters 6, 2256–2263 (2021). [8] Camacho, E. F., Bordons, C., Camacho, E. F. & Bordons, C. Model predictive controllers (Springer, 2007). [9] Liu, Y., Liu, K., Wang, G., Sun, Z. & Jin, L. Noise-tolerant zeroing neurodynamic algorithm for upper limb motion intention-based human–robot interaction control in non-ideal conditions. Expert Systems with Applications 213, 118891 (2023). [10] Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Camacho, E. F., Bordons, C., Camacho, E. F. & Bordons, C. Model predictive controllers (Springer, 2007). [9] Liu, Y., Liu, K., Wang, G., Sun, Z. & Jin, L. Noise-tolerant zeroing neurodynamic algorithm for upper limb motion intention-based human–robot interaction control in non-ideal conditions. Expert Systems with Applications 213, 118891 (2023). [10] Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Liu, Y., Liu, K., Wang, G., Sun, Z. & Jin, L. Noise-tolerant zeroing neurodynamic algorithm for upper limb motion intention-based human–robot interaction control in non-ideal conditions. Expert Systems with Applications 213, 118891 (2023). [10] Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022).
- Learning interaction-aware trajectory predictions for decentralized multi-robot motion planning in dynamic environments. IEEE Robotics and Automation Letters 6, 2256–2263 (2021). [8] Camacho, E. F., Bordons, C., Camacho, E. F. & Bordons, C. Model predictive controllers (Springer, 2007). [9] Liu, Y., Liu, K., Wang, G., Sun, Z. & Jin, L. Noise-tolerant zeroing neurodynamic algorithm for upper limb motion intention-based human–robot interaction control in non-ideal conditions. Expert Systems with Applications 213, 118891 (2023). [10] Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Camacho, E. F., Bordons, C., Camacho, E. F. & Bordons, C. Model predictive controllers (Springer, 2007). [9] Liu, Y., Liu, K., Wang, G., Sun, Z. & Jin, L. Noise-tolerant zeroing neurodynamic algorithm for upper limb motion intention-based human–robot interaction control in non-ideal conditions. Expert Systems with Applications 213, 118891 (2023). [10] Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Liu, Y., Liu, K., Wang, G., Sun, Z. & Jin, L. Noise-tolerant zeroing neurodynamic algorithm for upper limb motion intention-based human–robot interaction control in non-ideal conditions. Expert Systems with Applications 213, 118891 (2023). [10] Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022).
- Model predictive controllers (Springer, 2007). [9] Liu, Y., Liu, K., Wang, G., Sun, Z. & Jin, L. Noise-tolerant zeroing neurodynamic algorithm for upper limb motion intention-based human–robot interaction control in non-ideal conditions. Expert Systems with Applications 213, 118891 (2023). [10] Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Liu, Y., Liu, K., Wang, G., Sun, Z. & Jin, L. Noise-tolerant zeroing neurodynamic algorithm for upper limb motion intention-based human–robot interaction control in non-ideal conditions. Expert Systems with Applications 213, 118891 (2023). [10] Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022).
- Noise-tolerant zeroing neurodynamic algorithm for upper limb motion intention-based human–robot interaction control in non-ideal conditions. Expert Systems with Applications 213, 118891 (2023). [10] Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Zheng, H., , Smereka, M. J. & Mikulski, D. Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022).
- Bayesian optimization based trust model for human multi-robot collaborative motion tasks in offroad environments. International Journal of Social Robotics 1181–1201 (2023). [11] Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schumann, J. F., Srinivasan, A. R., Kober, J., Markkula, G. & Zgonnikov, A. Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022).
- Using models based on cognitive theory to predict human behavior in traffic: A case study, IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 5870–5875 (2023). [12] Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Liu, W., Liang, X. & Zheng, M. Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022).
- Task-constrained motion planning considering uncertainty-informed human motion prediction for human–robot collaborative disassembly. IEEE/ASME Transactions on Mechatronics 1–8 (2023). [13] Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Jin, Z., Liu, A., Zhang, W.-A., Yu, L. & Su, C.-Y. A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022).
- A learning based hierarchical control framework for human–robot collaboration. IEEE Transactions on Automation Science and Engineering 20, 506–517 (2023). [14] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022).
- Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [15] Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ullman, D. & Malle, B. F. Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022).
- Human-robot trust: Just a button press away, Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, 309–310 (2017). [16] Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Cutler, C. R. & Ramaker, B. L. Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022).
- Dynamic matrix control: A computer control algorithm, no. 17 in Joint Automatic Control Conference, 72 (1980). [17] Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ferranti, L., Lyons, L., Negenborn, R. R., Keviczky, T. & Alonso-Mora, J. Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022).
- Distributed nonlinear trajectory optimization for multi-robot motion planning. IEEE Transactions on Control Systems Technology 31, 809–824 (2023). [18] Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ioan, D., Prodan, I., Olaru, S., Stoican, F. & Niculescu, S. Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022).
- Mixed-integer programming in motion planning. Annu. Rev. Control (2020). [19] Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Nascimento, I. B. P., Ferramosca, A., Pimenta, L. C. A. & Raffo, G. V. NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022).
- NMPC strategy for a quadrotor UAV in a 3D unknown environment, 19th International Conference on Advanced Robotics (ICAR), 179–184 (2019). [20] Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ramalho, G. M., Carvalho, S. R., Finardi, E. C. & Moreno, U. F. Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022).
- Trajectory optimization using sequential convex programming with collision avoidance. Journal of Control, Automation and Electrical Systems 29, 318–327 (2018). [21] Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. P. Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022).
- Aircraft trajectory planning with collision avoidance using mixed integer linear programming, Vol. 3 of Proceedings of the 2002 American Control Conference, 1936–1941 (Anchorage, USA, 2002). [22] Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Afonso, R. J. M., Maximo, M. R. O. A. & Galvão, R. K. H. Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022).
- Task allocation and trajectory planning for multiple agents in the presence of obstacle and connectivity constraint with mixed-integer linear programming. Int. J. Robust Nonlinear Control 30, 5464–5491 (2020). [23] Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ng, A. & Russell, S. Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022).
- Algorithms for inverse reinforcement learning, Vol. 1 of ICML, 2 (2000). [24] Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Town, J., Morrison, Z. & Kamalapurkar, R. Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022).
- Pilot performance modeling via observer-based inverse reinforcement learning (2023). 2307.13150. [25] Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sadigh, D., Landolfi, N., Sastry, S. S., Seshia, S. A. & Dragan, A. D. Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022).
- Planning for cars that coordinate with people: leveraging effects on human actions for planning and active information gathering over human internal state. Autonomous Robots 42, 1405–1426 (2018). [26] Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fuchs, A., Passarella, A. & Conti, M. Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022).
- Modeling, replicating, and predicting human behavior: A survey. ACM Trans. Auton. Adapt. Syst. 18 (2023). [27] Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Avaei, A., van der Spaa, L., Peternel, L. & Kober, J. An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022).
- An incremental inverse reinforcement learning approach for motion planning with separated path and velocity preferences. Robotics 12 (2023). [28] Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Perrusquía, A. & Guo, W. Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022).
- Drone’s objective inference using policy error inverse reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems 1–12 (2023). [29] Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Fu, J., Luo, K. & Levine, S. Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022).
- Learning robust rewards with adversarial inverse reinforcement learning, International Conference on Learning Representations (2018). [30] Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K. et al. Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022).
- Maximum entropy inverse reinforcement learning., Vol. 8 of Proc. AAAI Conf. Artif. Intell., 1433–1438 (Chicago, IL, USA, 2008). [31] Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Sestini, A., Kuhnle, A. & Bagdanov, A. D. Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022).
- Demonstration-efficient inverse reinforcement learning in procedurally generated environments, 2021 IEEE Conference on Games (CoG), 1–8 (IEEE, 2021). [32] Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Yu, L., Song, J. & Ermon, S. Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022).
- Chaudhuri, K. & Salakhutdinov, R. (eds) Multi-agent adversarial inverse reinforcement learning. (eds Chaudhuri, K. & Salakhutdinov, R.) Proceedings of the 36th International Conference on Machine Learning, Vol. 97 of Proceedings of Machine Learning Research, 7194–7201 (PMLR, 2019). [33] Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Peschl, M., Zgonnikov, A., Oliehoek, F. A. & Siebert, L. C. MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022).
- MORAL: Aligning ai with human norms through multi-objective reinforced active learning, Proc. of the 21st Int. Conf. on Autonomous Agents and Multiagent Systems, 1038–1046 (2022). [34] Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022).
- Cavalcante Siebert, L. et al. Meaningful human control: actionable properties for ai system development. AI and Ethics 3, 241–255 (2023). [35] Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, P., Liu, D., Chen, J., Li, H. & Chan, C.-Y. Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022).
- Decision making for autonomous driving via augmented adversarial inverse reinforcement learning, 2021 IEEE International Conference on Robotics and Automation (ICRA), 1036–1042 (IEEE, 2021). [36] Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lee, K., Isele, D., Theodorou, E. A. & Bae, S. Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022).
- Spatiotemporal costmap inference for MPC via deep inverse reinforcement learning. IEEE Robotics and Automation Letters 7, 3194–3201 (2022). [37] Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Lu, J., Hossain, S., Sheng, W. & Bai, H. Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022).
- Cooperative driving in mixed traffic of manned and unmanned vehicles based on human driving behavior understanding, 2023 IEEE International Conference on Robotics and Automation (ICRA), 3532–3538 (2023). [38] Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Jansma, W., Trevisan, E., Álvaro Serra-Gómez & Alonso-Mora, J. Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022).
- Interaction-aware sampling-based MPC with learned local goal predictions (2023). 2309.14931. [39] Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Boldrer, M., Antonucci, A., Bevilacqua, P., Palopoli, L. & Fontanelli, D. Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022).
- Multi-agent navigation in human-shared environments: A safe and socially-aware approach. Robotics and Autonomous Systems 149, 103979 (2022). [40] Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kim, B. & Pineau, J. Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022).
- Socially adaptive path planning in human environments using inverse reinforcement learning. Int J of Soc Robotics 8, 51–66 (2016). [41] Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Galvan, M., Repiso, E. & Sanfeliu, A. Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022).
- Robot navigation to approach people using b-spline path planning and extended social force model, Robot 2019: Fourth Iberian Robotics Conference, 15–27 (2020). [42] Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wang, C., Li, Y., Ge, S. S. & Lee, T. H. Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022).
- Adaptive control for robot navigation in human environments based on social force model, 2016 IEEE International Conference on Robotics and Automation (ICRA), 5690–5695 (2016). [43] Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022).
- Hooi Chan, T. et al. A robotic system of systems for human-robot collaboration in search and rescue operations, 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 878–885 (2023). [44] Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Wampler, J., Li, B., Mosciki, T. & von Ellenrieder, K. D. Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022).
- Towards adjustable autonomy for human-robot interaction in marine systems, OCEANS 2017 - Aberdeen, 1–7 (2017). [45] Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022).
- Dalmasso, M. et al. Shared task representation for human–robot collaborative navigation: The collaborative search case. International Journal of Social Robotics (2023). [46] Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Richards, A. & How, J. Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022).
- Mixed-integer programming for control, Proceedings of the 2005 American Control Conference, 2676–2683 vol. 4 (2005). [47] Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022).
- Baotic, M. Polytopic computations in constrained optimal control. Automatika 50, 119–134 (2009). [48] You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). You, Y., Thomas, V., Colas, F., Alami, R. & Buffet, O. Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022).
- Robust robot planning for human-robot collaboration (2023). 2302.13916. [49] Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022).
- Kahneman, D. Maps of bounded rationality: Psychology for behavioral economics. The American Economic Review 93, 1449–1475 (2003). [50] Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Shah, R., Gundotra, N., Abbeel, P. & Dragan, A. On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022).
- On the feasibility of learning, rather than assuming, human biases for reward inference, International Conference on Machine Learning, 5670–5679 (PMLR, 2019). [51] Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022). Schweidel, K. S., Koehler, S. M., Desaraju, V. R. & Barić, M. Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022).
- Driver-in-the-loop contingency MPC with invariant sets, 2022 European Control Conference (ECC), 808–813 (2022).
- Angelo Caregnato-Neto (4 papers)
- Luciano Cavalcante Siebert (7 papers)
- Arkady Zgonnikov (36 papers)
- Marcos Ricardo Omena de Albuquerque Maximo (4 papers)
- Rubens Junqueira Magalhães Afonso (4 papers)