Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Highly efficient Gauss's law-preserving spectral algorithms for Maxwell's double-curl source and eigenvalue problems based on eigen-decomposition (2402.19125v1)

Published 29 Feb 2024 in math.NA and cs.NA

Abstract: In this paper, we present Gauss's law-preserving spectral methods and their efficient solution algorithms for curl-curl source and eigenvalue problems in two and three dimensions arising from Maxwell's equations. Arbitrary order $H(curl)$-conforming spectral basis functions in two and three dimensions are firstly proposed using compact combination of Legendre polynomials. A mixed formulation involving a Lagrange multiplier is then adopted to preserve the Gauss's law in the weak sense. To overcome the bottleneck of computational efficiency caused by the saddle-point nature of the mixed scheme, we present highly efficient solution algorithms based on reordering and decoupling of the resultant linear algebraic system and numerical eigen-decomposition of one dimensional mass matrix. The proposed solution algorithms are direct methods requiring only several matrix-matrix or matrix-tensor products of $N$-by-$N$ matrices, where $N$ is the highest polynomial order in each direction. Compared with other direct methods, the computational complexities are reduced from $O(N6)$ and $O(N9)$ to $O(N3)$ and $O(N4)$ with small and constant pre-factors for 2D and 3D cases, respectively, and can further be accelerated to $O(N{2.807})$ and $O(N{3.807})$, when boosted with the Strassen's matrix multiplication algorithm. Moreover, these algorithms strictly obey the Helmholtz-Hodge decomposition, thus totally eliminate the spurious eigen-modes of non-physical zero eigenvalues. Extensions of the proposed methods and algorithms to problems in complex geometries with variable coefficients and inhomogeneous boundary conditions are discussed to deal with more general situations. Ample numerical examples for solving Maxwell's source and eigenvalue problems are presented to demonstrate the accuracy and efficiency of the proposed methods.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. R. A. Adams. Sobolev Spaces. Acadmic Press, New York, 1975.
  2. D. S. Balsara and J. Kim. An intercomparison between divergence-cleaning and staggered mesh formulations for numerical magnetohydrodynamics. Astrophys J., 602:1079–1090, 2004.
  3. Mixed Finite Element Methods and Applications, volume 44 of Springer Series in Computational Mathematics. Springer, Heidelberg, 2013.
  4. The approximation of the Maxwell eigenvalue problem using a least-squares method. Math. Comp., 74(252):1575–1598, 2005.
  5. A locally divergence-free interior penalty method for two-dimensional curl-curl problems. SIAM J. Numer. Anal., 46(3):1190–1211, 2008.
  6. D. Buchholz. Gauss’ law and the infraparticle problem. Phys. Lett. B, 174(3):331–334, 1986.
  7. F. Chen. Introduction to Plasma Physics and Controlled Fusion, volume 1. Springer, 1984.
  8. Edge element methods for Maxwell’s equations with strong convergence for Gauss’ laws. SIAM J. Numer. Anal., 52(2):779–807, 2014.
  9. P. G. Ciarlet. Mathematical elasticity. Vol. I. Three-dimensional elasticity, volume 20 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam, 1988.
  10. P. A. Davidson. An Introduction to Magnetohydrodynamics. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 2001.
  11. Hyperbolic divergence cleaning for the MHD equations. J. Comput. Phys., 175(2):645–673, 2002.
  12. Mixed finite element method with Gauss’s law enforced for the Maxwell eigenproblem. SIAM J. Sci. Comput., 43(6):A3677–A3712, 2021.
  13. P. Fernandes and M. Raffetto. Counterexamples to the currently accepted explanation for spurious modes and necessary and sufficient conditions to avoid them. IEEE transactions on magnetics, 38(2):653–656, 2002.
  14. Orientation embedded high order shape functions for the exact sequence elements of all shapes. Comput. Math. Appl., 70(4):353–458, 2015.
  15. Matrix computations. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, fourth edition, 2013.
  16. Transfinite element methods: blending-function interpolation over arbitrary curved element domains. Numer. Math., 21:109–129, 1973.
  17. R. Hiptmair and J. Xu. Nodal auxiliary space preconditioning in 𝐇⁢(𝐜𝐮𝐫𝐥)𝐇𝐜𝐮𝐫𝐥{\bf H}({\bf curl})bold_H ( bold_curl ) and 𝐇⁢(div)𝐇div{\bf H}({\rm div})bold_H ( roman_div ) spaces. SIAM J. Numer. Anal., 45(6):2483–2509, 2007.
  18. Q. Hu and J. Zou. Substructuring preconditioners for saddle-point problems arising from Maxwell’s equations in three dimensions. Math. Comp., 73(245):35–61, 2004.
  19. Photonic Crystals: Molding the Flow of Light. Princeton University Press, 2008.
  20. J. Kijowski and G. Rudolph. On the Gauss law and global charge for quantum chromodynamics. J. Math. Phys., 43(4):1796–1808, 2002.
  21. F. Kikuchi. Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnetism. Comput. Methods Appl. Mech. Engrg., 64(1-3):509–521, 1987.
  22. Q. Liang and X. Xu. A two-level preconditioned Helmholtz-Jacobi-Davidson method for the Maxwell eigenvalue problem. Math. Comp., 91(334):623–657, 2022.
  23. Q. Liang and X. Xu. A two-level preconditioned Helmholtz subspace iterative method for Maxwell eigenvalue problems. SIAM J. Numer. Anal., 61(2):642–674, 2023.
  24. Mixed spectral element method for 2D Maxwell’s eigenvalue problem. Commun. Comput. Phys., 17(2):458–486, 2015.
  25. Semiconductor Equations. Springer Science & Business Media, 2012.
  26. P. Monk. Finite Element Methods for Maxwell’s Equations. Numerical Mathematics and Scientific Computation. Oxford University Press, New York, 2003.
  27. Gauss’ law and string-localized quantum field theory. J. High Energy Phys., no.(1):001, 26pp, 2020.
  28. Divergence correction techniques for Maxwell solvers based on a hyperbolic model. J. Comput. Phys., 161(2):484–511, 2000.
  29. J.-C. Nédélec. Mixed finite elements in 𝐑3superscript𝐑3{\bf R}^{3}bold_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. Numer. Math., 35(3):315–341, 1980.
  30. J.-C. Nédélec. A new family of mixed finite elements in 𝐑3superscript𝐑3{\bf R}^{3}bold_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. Numer. Math., 50(1):57–81, 1986.
  31. S. J. Orfanidis. Electromagnetic Waves and Antennas. Rutgers University New Brunswick, NJ, 2002.
  32. Low-order preconditioning for the high-order finite element de Rham complex. SIAM J. Sci. Comput., 45(2):A675–A702, 2023.
  33. Electromagnetism, local covariance, the Aharonov-Bohm effect and Gauss’ law. Comm. Math. Phys., 328(2):625–667, 2014.
  34. J. Shen. Efficient spectral-Galerkin method I. Direct solvers for second- and fourth-order equations by using Legendre polynomials. SIAM J. Sci. Comput., 15:1489–1505, 1994.
  35. V. Strassen. Gaussian elimination is not optimal. Numer. Math., 13:354–356, 1969.
  36. J. Sun and A. Zhou. Finite Element Methods for Eigenvalue Problems. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL, 2017.
  37. A. Taflove. Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems. IEEE Trans. Elect. Compat., EMC-22(3):191–202, 1980.
  38. K. Yee. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas and Prop., 14(3):302–307, 1966.
  39. I. Yousept and J. Zou. Edge element method for optimal control of stationary Maxwell system with Gauss law. SIAM J. Numer. Anal., 55(6):2787–2810, 2017.
  40. S. Zaglmayr. High Order Finite Element Methods for Electromagnetic Field Computation (Ph.D. thesis). KEPLER, JOHANNES, 2006.
  41. Double-cone ignition scheme for inertial confinement fusion. Phil. Trans. Royal Soc. A, 378(2184):20200015, 2020.
  42. Z. Zhang. How many numerical eigenvalues can we trust? J. Sci. Comput., 65(2):455–466, 2015.

Summary

We haven't generated a summary for this paper yet.