Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sensing atomic superfluid rotation beyond the standard quantum limit (2402.19123v3)

Published 29 Feb 2024 in quant-ph, cond-mat.quant-gas, cond-mat.stat-mech, and physics.optics

Abstract: Atomic superfluids formed using Bose-Einstein condensates (BECs) in a ring trap are currently being investigated in the context of superfluid hydrodynamics, quantum sensing and matter-wave interferometry. The characterization of the rotational properties of such superfluids is important, but can presently only be performed by using optical absorption imaging, which completely destroys the condensate. Recent studies have proposed coupling the ring BEC to optical cavity modes carrying orbital angular momentum to make minimally destructive measurements of the condensate rotation. The sensitivity of these proposals, however, is bounded below by the standard quantum limit set by the combination of laser shot noise and radiation pressure noise. In this work, we provide a theoretical framework that exploits the fact that the interaction between the scattered modes of the condensate and the light reduces to effective optomechanical equations of motion. We present a detailed theoretical analysis to demonstrate that the use of squeezed light and backaction evasion techniques allows the angular momentum of the condensate to be sensed with noise well below the standard quantum limit. Our proposal is relevant to atomtronics, quantum sensing and quantum information.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys. 80, 885 (2008).
  2. G. Barontini and S. Worm, Measuring the stability of fundamental constants with a network of clocks, EPJ Quantum Technol. 9, 12 (2022).
  3. G. K. Campbell and W. D. Phillips, Ultracold atoms and precise time standards, Philos. Trans. R. Soc. A 369, 4078 (2011).
  4. K. Beloy et al., Frequency ratio measurements at 18-digit accuracy using an optical clock network, Nature 591, 564 (2021).
  5. G. E. Marti, R. Olf, and D. M. Stamper-Kurn, Collective excitation interferometry with a toroidal Bose-Einstein condensate, Phys. Rev. A 91, 013602 (2015).
  6. S. Ragole and J. M. Taylor, Interacting atomic interferometry for rotation sensing approaching the heisenberg limit, Phys. Rev. Lett. 117, 203002 (2016).
  7. G. Pelegrí, J. Mompart, and V. Ahufinger, Quantum sensing using imbalanced counter-rotating Bose–Einstein condensate modes, New J. Phys. 20, 103001 (2018).
  8. S. R. Muniz, D. S. Naik, and C. Raman, Bragg spectroscopy of vortex lattices in Bose-Einstein condensates, Phys. Rev. A 73, 041605 (2006).
  9. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity optomechanics, Rev. Mod. Phys. 86, 1391 (2014).
  10. L. Allen, S. Barnett, and M. Padgett, Optical Angular Momentum (IOP Publishing, Bristol, 2003).
  11. C. M. Caves, Quantum-mechanical radiation-pressure fluctuations in an interferometer, Phys. Rev. Lett. 45, 75 (1980).
  12. T. P. Purdy, R. W. Peterson, and C. A. Regal, Observation of radiation pressure shot noise on a macroscopic object, Science 339, 801 (2013a).
  13. C. M. Caves, Quantum-mechanical noise in an interferometer, Phys. Rev. D 23, 1693 (1981).
  14. V. B. Braginsky, Y. I. Vorontsov, and K. S. Thorne, Quantum nondemolition measurements, Science 209, 547 (1980).
  15. D. Ganapathy et al. (LIGO O4 Detector Collaboration), Broadband quantum enhancement of the ligo detectors with frequency-dependent squeezing, Phys. Rev. X 13, 041021 (2023).
  16. V. B. Braginsky, F. Y. Khalili, and K. S. Thorne, Quantum Measurement (Cambridge University Press, Cambridge, 1992).
  17. M. J. Woolley and A. A. Clerk, Two-mode back-action-evading measurements in cavity optomechanics, Phys. Rev. A 87, 063846 (2013).
  18. D. Malz and A. Nunnenkamp, Floquet approach to bichromatically driven cavity-optomechanical systems, Phys. Rev. A 94, 023803 (2016a).
  19. D. Malz and A. Nunnenkamp, Optomechanical dual-beam backaction-evading measurement beyond the rotating-wave approximation, Phys. Rev. A 94, 053820 (2016b).
  20. M. Brunelli, D. Malz, and A. Nunnenkamp, Conditional dynamics of optomechanical two-tone backaction-evading measurements, Phys. Rev. Lett. 123, 093602 (2019).
  21. P. B. Blakie and R. J. Ballagh, Spatially selective bragg scattering: A signature for vortices in Bose-Einstein condensates, Phys. Rev. Lett. 86, 3930 (2001).
  22. C. Gardiner and P. Zoller, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics, Springer Series in Synergetics (Springer, 2004).
  23. R. S. Schoenfeld and W. Harneit, Real time magnetic field sensing and imaging using a single spin in diamond, Phys. Rev. Lett. 106, 030802 (2011).
  24. P. Grangier, J. A. Levenson, and J.-P. Poizat, Quantum non-demolition measurements in optics, Nature 396, 537 (1998).
  25. A. A. Clerk, F. Marquardt, and K. Jacobs, Back-action evasion and squeezing of a mechanical resonator using a cavity detector, New J. Phys. 10, 095010 (2008).
  26. M. Tsang and C. M. Caves, Coherent quantum-noise cancellation for optomechanical sensors, Phys. Rev. Lett. 105, 123601 (2010).
  27. M. Tsang and C. M. Caves, Evading quantum mechanics: Engineering a classical subsystem within a quantum environment, Phys. Rev. X 2, 031016 (2012).

Summary

We haven't generated a summary for this paper yet.