Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal quantum computation using quantum annealing with the transverse-field Ising Hamiltonian (2402.19114v2)

Published 29 Feb 2024 in quant-ph

Abstract: Quantum computation is a promising emerging technology, and by utilizing the principles of quantum mechanics, it is expected to achieve faster computations than classical computers for specific problems. There are two distinct architectures for quantum computation: gate-based quantum computers and quantum annealing. In gate-based quantum computation, we implement a sequence of quantum gates that manipulate qubits. This approach allows us to perform universal quantum computation, yet they pose significant experimental challenges for large-scale integration. On the other hand, with quantum annealing, the solution of the optimization problem can be obtained by preparing the ground state. Conventional quantum annealing devices with transverse-field Ising Hamiltonian, such as those manufactured by D-Wave Inc., achieving around 5000 qubits, are relatively more amenable to large-scale integration but are limited to specific computations. In this paper, we present a practical method for implementing universal quantum computation within the conventional quantum annealing architecture using the transverse-field Ising Hamiltonian. Our innovative approach relies on an adiabatic transformation of the Hamiltonian, changing from transverse fields to a ferromagnetic interaction regime, where the ground states become degenerate. Notably, our proposal is compatible with D-Wave devices, opening up possibilities for realizing large-scale gate-based quantum computers. This research bridges the gap between conventional quantum annealing and gate-based quantum computation, offering a promising path toward the development of scalable quantum computing platforms.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. T. Kadowaki and H. Nishimori, Quantum annealing in the transverse ising model, Physical Review E 58, 5355 (1998).
  2. A. Y. Kitaev, Quantum measurements and the abelian stabilizer problem, arXiv preprint quant-ph/9511026  (1995).
  3. Y. Shi, Both toffoli and controlled-not need little help to do universal quantum computation, arXiv preprint quant-ph/0205115  (2002).
  4. P. W. Shor, Algorithms for quantum computation: discrete logarithms and factoring, in Proceedings 35th annual symposium on foundations of computer science (Ieee, 1994) pp. 124–134.
  5. P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM review 41, 303 (1999).
  6. A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum algorithm for linear systems of equations, Physical review letters 103, 150502 (2009).
  7. M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information (Cambridge university press, 2010).
  8. L. K. Grover, A fast quantum mechanical algorithm for database search, in Proceedings of the twenty-eighth annual ACM symposium on Theory of computing (1996) pp. 212–219.
  9. A. Y. Kitaev, Quantum computations: algorithms and error correction, Russian Mathematical Surveys 52, 1191 (1997).
  10. S. H. Adachi and M. P. Henderson, Application of quantum annealing to training of deep neural networks, arXiv preprint arXiv:1510.06356  (2015).
  11. M. Sasdelli and T.-J. Chin, Quantum annealing formulation for binary neural networks, in 2021 Digital Image Computing: Techniques and Applications (DICTA) (IEEE, 2021) pp. 1–10.
  12. P. Date and T. Potok, Adiabatic quantum linear regression, Scientific reports 11, 21905 (2021).
  13. K. Kurihara, S. Tanaka, and S. Miyashita, Quantum annealing for clustering, arXiv preprint arXiv:1408.2035  (2014).
  14. S. Heidari, M. J. Dinneen, and P. Delmas, Quantum annealing for computer vision minimization problems, arXiv preprint arXiv:2312.12848  (2023).
  15. D. J. Woun and P. Date, Adiabatic quantum support vector machines, in 2023 IEEE International Conference on Quantum Computing and Engineering (QCE), Vol. 2 (IEEE, 2023) pp. 296–297.
  16. K. L. Pudenz and D. A. Lidar, Quantum adiabatic machine learning, Quantum information processing 12, 2027 (2013).
  17. T. Kato, On the adiabatic theorem of quantum mechanics, Journal of the Physical Society of Japan 5, 435 (1950).
  18. A. Messiah, Quantum mechanics (Courier Corporation, 2014).
  19. S. Jansen, M.-B. Ruskai, and R. Seiler, Bounds for the adiabatic approximation with applications to quantum computation, Journal of Mathematical Physics 48 (2007).
  20. J. D. Biamonte and P. J. Love, Realizable hamiltonians for universal adiabatic quantum computers, Physical Review A 78, 012352 (2008).
  21. J. Clarke and F. K. Wilhelm, Superconducting quantum bits, Nature 453, 1031 (2008).
  22. Y. Makhlin, G. Schön, and A. Shnirman, Quantum-state engineering with josephson-junction devices, Reviews of modern physics 73, 357 (2001).
  23. T. Imoto, Y. Seki, and Y. Matsuzaki, Obtaining ground states of the xxz model using the quantum annealing with inductively coupled superconducting flux qubits, Journal of the Physical Society of Japan 91, 064004 (2022a).
  24. T. Imoto, Y. Seki, and Y. Matsuzaki, Quantum annealing with symmetric subspaces, arXiv preprint arXiv:2209.09575  (2022b).
  25. Y. Matsuzaki, T. Imoto, and Y. Susa, Generation of multipartite entanglement between spin-1 particles with bifurcation-based quantum annealing, Scientific Reports 12, 14964 (2022).
  26. K. L. Pudenz, T. Albash, and D. A. Lidar, Error-corrected quantum annealing with hundreds of qubits, Nature communications 5, 3243 (2014).
  27. D. A. Lidar, I. L. Chuang, and K. B. Whaley, Decoherence-free subspaces for quantum computation, Physical Review Letters 81, 2594 (1998).
  28. J. Preskill, Quantum computing in the nisq era and beyond, Quantum 2, 79 (2018).
  29. Y. Seki and H. Nishimori, Quantum annealing with antiferromagnetic fluctuations, Physical Review E 85, 051112 (2012).
  30. Y. Seki and H. Nishimori, Quantum annealing with antiferromagnetic transverse interactions for the hopfield model, Journal of Physics A: Mathematical and Theoretical 48, 335301 (2015).
  31. K. Takada, Y. Yamashiro, and H. Nishimori, Mean-field solution of the weak-strong cluster problem for quantum annealing with stoquastic and non-stoquastic catalysts, Journal of the Physical Society of Japan 89, 044001 (2020).
  32. Y. Susa, T. Imoto, and Y. Matsuzaki, Nonstoquastic catalyst for bifurcation-based quantum annealing of the ferromagnetic p-spin model, Physical Review A 107, 052401 (2023).
  33. M. V. Berry, Transitionless quantum driving, Journal of Physics A: Mathematical and Theoretical 42, 365303 (2009).
  34. A. M. Childs, Universal computation by quantum walk, Physical review letters 102, 180501 (2009).
  35. A. M. Childs, D. Gosset, and Z. Webb, Universal computation by multiparticle quantum walk, Science 339, 791 (2013).
  36. R. Raussendorf and H. J. Briegel, A one-way quantum computer, Physical review letters 86, 5188 (2001).
  37. I. Hen, Quantum gates with controlled adiabatic evolutions, Physical Review A 91, 022309 (2015).
  38. D. Bacon and S. T. Flammia, Adiabatic cluster-state quantum computing, Physical Review A 82, 030303 (2010).
  39. H. Ribeiro and A. A. Clerk, Accelerated adiabatic quantum gates: optimizing speed versus robustness, Physical Review A 100, 032323 (2019).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com