Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Experimental investigation of a multi-photon Heisenberg-limited interferometric scheme: the effect of imperfections (2402.19079v2)

Published 29 Feb 2024 in quant-ph

Abstract: Interferometric phase estimation is an essential tool for precise measurements of quantities such as displacement, velocity and material properties. The lower bound on measurement uncertainty achievable with classical resources is set by the shot-noise limit (SNL) that scales asymptotically as $1/\sqrt{N}$, where $N$ is the number of resources used. The experiment of [S. Daryanoosh et al., Nat. Commun. ${\bf 9}$, 4606 (2018)] showed how to achieve the ultimate precision limit, the exact Heisenberg limit (HL), in ab-initio phase estimation with $N=3$ photon-passes, using an entangled biphoton state in combination with particular measurement techniques. The advantage of the HL over the SNL increases with the number of resources used. Here we present, and implement experimentally, a scheme for generation of the optimal $N=7$ triphoton state. We study experimentally and theoretically the generated state quality and its potential for phase estimation. We show that the expected usefulness of the prepared triphoton state for HL phase estimation is significantly degraded by even quite small experimental imperfections, such as optical mode mismatch and unwanted higher-order multi-photon terms in the states produced in parametric down-conversion.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (11)
  1. H. M. Wiseman and G. J. Milburn, Quantum Measurement and Control (Cambridge University Press, 2009).
  2. K. Jacobs, Quantum Measurement Theory and its Applications (Cambridge University Press, 2014).
  3. J. P. Dowling, Contemporary Physics 49, 125 (2008).
  4. D. W. Berry and H. M. Wiseman, Phys. Rev. Lett. 85, 5098 (2000).
  5. H. M. Wiseman, Phys. Rev. Lett. 75, 4587 (1995).
  6. R. B. Griffiths and C.-S. Niu, Phys. Rev. Lett. 76, 3228 (1996).
  7. H. M. Wiseman and R. B. Killip, Phys. Rev. A 56, 944 (1997).
  8. T. C. Ralph and G. J. Pryde, Progress in Optics 54, 209 (2010).
  9. R. Jozsa, J. Mod. Opt. 41, 2315 (1994).
  10. S. Slussarenko and G. J. Pryde, Appl. Phys. Rev. 6, 041303 (2019).
  11. H. J. Carmichael, Statistical Methods in Quantum Optics 2 (Springer-verlag, 2008).

Summary

We haven't generated a summary for this paper yet.