Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ultraviolet Positioning via TDOA: Error Analysis and System Prototype (2402.19013v2)

Published 29 Feb 2024 in eess.SY and cs.SY

Abstract: This work performs the design, real-time hardware realization, and experimental evaluation of a positioning system by ultra-violet (UV) communication under photon-level signal detection. The positioning is based on time-difference of arrival (TDOA) principle. Time division-based transmission of synchronization sequence from three transmitters with known positions is applied. We investigate the positioning error via decomposing it into two parts, the transmitter-side timing error and the receiver-side synchronization error. The theoretical average error matches well with the simulation results, which indicates that theoretical fitting can provide reliable guidance and prediction for hardware experiments. We also conduct real-time hardware realization of the TDOA-based positioning system using Field Programmable Gate Array (FPGA), which is experimentally evaluated via outdoor experiments. Experimental results match well with the theoretical and simulation results.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. Y. Chan and K. Ho, “A simple and efficient estimator for hyperbolic location,” IEEE Transactions on Signal Processing, vol. 42, no. 8, pp. 1905–1915, 1994.
  2. K. C. Ho, “Bias reduction for an explicit solution of source localization using tdoa,” IEEE Transactions on Signal Processing, vol. 60, no. 5, pp. 2101–2114, 2012.
  3. K. Ho and Y. Chan, “Solution and performance analysis of geolocation by tdoa,” IEEE Transactions on Aerospace and Electronic Systems, vol. 29, no. 4, pp. 1311–1322, 1993.
  4. N. Liu, Z. Xu, and B. M. Sadler, “Low-complexity hyperbolic source localization with a linear sensor array,” IEEE Signal Processing Letters, vol. 15, pp. 865–868, 2008.
  5. H. Xu and Y. Wang, “A linear algorithm based on tdoa technique for uwb localization,” in 2011 International Conference on Electric Information and Control Engineering, 2011, pp. 1013–1015.
  6. K. Ho and W. Xu, “An accurate algebraic solution for moving source location using tdoa and fdoa measurements,” IEEE Transactions on Signal Processing, vol. 52, no. 9, pp. 2453–2463, 2004.
  7. N. Liu, Z. Xu, and B. M. Sadler, “Geolocation performance with biased range measurements,” IEEE Transactions on Signal Processing, vol. 60, no. 5, pp. 2315–2329, 2012.
  8. S.-Y. Jung, S. Hann, and C.-S. Park, “Tdoa-based optical wireless indoor localization using led ceiling lamps,” IEEE Transactions on Consumer Electronics, vol. 57, no. 4, pp. 1592–1597, 2011.
  9. M. A. Khalighi and M. Uysal, “Survey on free space optical communication: A communication theory perspective,” IEEE Communications Surveys & Tutorials, vol. 16, no. 4, pp. 2231–2258, 2014.
  10. M.-C. Jeong, J.-S. Lee, S.-Y. Kim, S.-W. Namgung, J.-H. Lee, M.-Y. Cho, S.-W. Huh, Y.-S. Ahn, J.-W. Cho, and J.-S. Lee, “8 x 10-gb/s terrestrial optical free-space transmission over 3.4 km using an optical repeater,” IEEE Photonics Technology Letters, vol. 15, no. 1, pp. 171–173, 2003.
  11. E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Matsumoto, “1.28-tb/s (32 ×\times× 40 gb/s) free-space optical wdm transmission system,” IEEE Photonics Technology Letters, vol. 21, no. 16, pp. 1121–1123, 2009.
  12. W. J. Miniscalco and S. A. Lane, “Optical space-time division multiple access,” IEEE/OSA Journal of Lightwave Technology, vol. 30, no. 11, pp. 1771–1785, 2012.
  13. S. Zhang, S. Watson, J. J. D. McKendry, D. Massoubre, A. Cogman, E. Gu, R. K. Henderson, A. E. Kelly, and M. D. Dawson, “1.5 gbit/s multi-channel visible light communications using cmos-controlled gan-based leds,” IEEE/OSA Journal of Lightwave Technology, vol. 31, no. 8, pp. 1211–1216, 2013.
  14. V. W. S. Chan, “Free-space optical communications,” IEEE/OSA Journal of Lightwave Technology, vol. 24, no. 12, pp. 4750–4762, 2006.
  15. H. Willebrand and B. Ghuman, “Fiber optics without fiber,” IEEE Spectrum, vol. 38, no. 8, pp. 40–45, 2001.
  16. D. Kedar and S. Arnon, “Urban optical wireless communication networks: the main challenges and possible solutions,” IEEE Communications Magazine, vol. 42, no. 5, pp. S2–S7, 2004.
  17. G. Shaw, A. Siegel, and J. Model, “Ultraviolet comm links for distributed sensor networks,” in Digest of the LEOS Summer Topical Meetings, 2005., 2005, pp. 39–40.
  18. A. Vavoulas, H. G. Sandalidis, N. D. Chatzidiamantis, Z. Xu, and G. K. Karagiannidis, “A survey on ultraviolet c-band (uv-c) communications,” IEEE Communications Surveys Tutorials, vol. 21, no. 3, pp. 2111–2133, 2019.
  19. D. M. Reilly, D. T. Moriarty, and J. A. Maynard, “Unique properties of solar blind ultraviolet communication systems for unattended ground sensor networks,” in Unmanned/Unattended Sensors and Sensor Networks, E. M. Carapezza, Ed., vol. 5611, International Society for Optics and Photonics.   SPIE, 2004, pp. 244 – 254. [Online]. Available: https://doi.org/10.1117/12.582002
  20. H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE Journal on Selected Areas in Communications, vol. 27, no. 9, pp. 1535–1544, 2009.
  21. H. Xiao, Y. Zuo, J. Wu, H. Guo, and J. Lin, “Non-line-of-sight ultraviolet single-scatter propagation model.” Optics Express, vol. 19 18, pp. 17 864–75, 2011.
  22. G. Chen, L. Liao, Z. Li, R. J. Drost, and B. M. Sadler, “Experimental and simulated evaluation of long distance nlos uv communication,” in 2014 9th International Symposium on Communication Systems, Networks Digital Sign (CSNDSP), 2014, pp. 904–909.
  23. L. Liao, R. J. Drost, Z. Li, T. Lang, B. M. Sadler, and G. Chen, “Long-distance non-line-of-sight ultraviolet communication channel analysis: experimentation and modelling,” IET Optoelectronics, vol. 9, pp. 223–231, 2015.
  24. D. K. Borah, V. R. Mareddy, and D. G. Voelz, “Single and double scattering event analysis for ultraviolet communication channels,” Optics Express, vol. 29 4, pp. 5327–5342, 2021.
  25. Z. Shen, J. Ma, T. Shan, and P. Su, “Improved monte carlo integration models for ultraviolet communications,” in 2020 IEEE 20th International Conference on Communication Technology (ICCT), 2020, pp. 168–172.
  26. C. Gong and Z. Xu, “Non-line of sight optical wireless relaying with the photon counting receiver: A count-and-forward protocol,” IEEE Transactions on Wireless Communications, vol. 14, no. 1, pp. 376–388, 2015.
  27. C. Gong, K. Wang, Z. Xu, and X. Wang, “On full-duplex relaying for optical wireless scattering communication with on-off keying modulation,” IEEE Transactions on Wireless Communications, vol. 17, no. 4, pp. 2525–2538, 2018.
  28. M. H. Ardakani, A. R. Heidarpour, and M. Uysal, “Performance analysis of relay-assisted nlos ultraviolet communications over turbulence channels,” IEEE/OSA Journal of Optical Communications and Networking, vol. 9, no. 1, pp. 109–118, 2017.
  29. N. D. Chatzidiamantis, G. K. Karagiannidis, and M. Uysal, “Generalized maximum-likelihood sequence detection for photon-counting free space optical systems,” IEEE Transactions on Communications, vol. 58, no. 12, pp. 3381–3385, 2010.
  30. C. Gong and Z. Xu, “Lmmse simo receiver for short-range non-line-of-sight scattering communication,” IEEE Transactions on Wireless Communications, vol. 14, no. 10, pp. 5338–5349, 2015.
  31. M. A. El-Shimy and S. Hranilovic, “Spatial-diversity imaging receivers for non-line-of-sight solar-blind uv communications,” IEEE/OSA Journal of Lightwave Technology, vol. 33, no. 11, pp. 2246–2255, 2015.
  32. G. Wang, K. Wang, C. Gong, D. Zou, Z. Jiang, and Z. Xu, “A 1mbps real-time nlos uv scattering communication system with receiver diversity over 1km,” IEEE Photonics Journal, vol. 10, no. 2, pp. 1–13, 2018.
  33. S. Yu, C. Gong, and Z. Xu, “The design and optimization of synchronization sequence for Ultraviolet communication,” arXiv e-prints, p. arXiv:2208.01559, Aug. 2022.
  34. Q. Zou, W. Xia, Y. Zhu, J. Zhang, B. Huang, F. Yan, and L. Shen, “A vlc and imu integration indoor positioning algorithm with weighted unscented kalman filter,” in 2017 3rd IEEE International Conference on Computer and Communications (ICCC), 2017, pp. 887–891.
  35. W. Tang, J. Zhang, B. Chen, Y. Liu, Y. Zuo, S. Liu, and Y. Dai, “Analysis of indoor vlc positioning system with multiple reflections,” in 2017 16th International Conference on Optical Communications and Networks (ICOCN), 2017, pp. 1–3.
  36. T. The Son, H. Le-Minh, F. Mousa, Z. Ghassemlooy, and N. Van Tuan, “Adaptive correction model for indoor mimo vlc using positioning technique with node knowledge,” in 2015 International Conference on Communications, Management and Telecommunications (ComManTel), 2015, pp. 94–98.
  37. B. Ghimire, J. Seitz, and C. Mutschler, “Indoor positioning using ofdm-based visible light communication system,” in 2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 2018, pp. 1–8.
  38. B. Lin, X. Tang, Z. Ghassemlooy, C. Lin, and Y. Li, “Experimental demonstration of an indoor vlc positioning system based on ofdma,” IEEE Photonics Journal, vol. 9, no. 2, pp. 1–9, 2017.
  39. F. Akhoundi, A. Minoofar, and J. A. Salehi, “Underwater positioning system based on cellular underwater wireless optical cdma networks,” in 2017 26th Wireless and Optical Communication Conference (WOCC), 2017, pp. 1–3.
  40. Y. Zhang, Z. Wei, Z. Liu, C. Cheng, Z. Wang, X. Tang, Y. Yang, C. Yu, and H. Y. Fu, “Optical communication and positioning convergence for flexible underwater wireless sensor network,” IEEE/OSA Journal of Lightwave Technology, vol. 41, no. 16, pp. 5321–5327, 2023.
  41. Y. Nakazawa, H. Makino, K. Nishimori, D. Wakatsuki, and H. Komagata, “Led-tracking and id-estimation for indoor positioning using visible light communication,” in 2014 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 2014, pp. 87–94.
  42. J.-H. Kim and S. Moon, “Recursive bayesian estimation based indoor fire location by fusing rotary uv sensors,” in 2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 2020, pp. 528–533.

Summary

We haven't generated a summary for this paper yet.