Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Vector Valued Gårding Inequality for pseudo-differential operators on compact homogeneous manifolds (2402.18966v3)

Published 29 Feb 2024 in math.AP

Abstract: We prove sufficient conditions in order to obtain a sharp G\aa rding inequality for pseudo-differential operators acting on vector-valued functions on compact Lie groups. As a consequence, we obtain a sharp G\aa rding inequality for compact homogeneous vector bundles and compact homogeneous manifolds. The sharp G\aa rding inequality is the strongest lower bound estimate known to hold for systems on $\mathbb{R}n$, and the aim of this paper is to extend this property to systems on compact Lie groups and compact homogeneous manifolds. Our results extend previous works by Lax and Nirenberg [Comm. Pure Appl. Math., Vol. 8, 129-209, (1966)], and by Ruzhansky and Turunen [J. Funct. Anal., Vol. 267, 144-172, (2011)]. As an application, we establish existence and uniqueness of solution to a class of systems of initial value problems of pseudo-differential equations on compact Lie groups and compact homogeneous manifolds.

Summary

We haven't generated a summary for this paper yet.