Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Boosting Semi-Supervised Object Detection in Remote Sensing Images With Active Teaching (2402.18958v1)

Published 29 Feb 2024 in cs.CV

Abstract: The lack of object-level annotations poses a significant challenge for object detection in remote sensing images (RSIs). To address this issue, active learning (AL) and semi-supervised learning (SSL) techniques have been proposed to enhance the quality and quantity of annotations. AL focuses on selecting the most informative samples for annotation, while SSL leverages the knowledge from unlabeled samples. In this letter, we propose a novel AL method to boost semi-supervised object detection (SSOD) for remote sensing images with a teacher student network, called SSOD-AT. The proposed method incorporates an RoI comparison module (RoICM) to generate high-confidence pseudo-labels for regions of interest (RoIs). Meanwhile, the RoICM is utilized to identify the top-K uncertain images. To reduce redundancy in the top-K uncertain images for human labeling, a diversity criterion is introduced based on object-level prototypes of different categories using both labeled and pseudo-labeled images. Extensive experiments on DOTA and DIOR, two popular datasets, demonstrate that our proposed method outperforms state-of-the-art methods for object detection in RSIs. Compared with the best performance in the SOTA methods, the proposed method achieves 1 percent improvement in most cases in the whole AL.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. M. ElMikaty and T. Stathaki, “Detection of cars in high-resolution aerial images of complex urban environments,” IEEE Transactions on Geoscience and Remote Sensing, vol. 55, no. 10, pp. 5913–5924, 2017.
  2. G. Cheng, J. Han, P. Zhou, and D. Xu, “Learning rotation-invariant and fisher discriminative convolutional neural networks for object detection,” IEEE Transactions on Image Processing, vol. 28, no. 1, pp. 265–278, 2019.
  3. C. Li, G. Cheng, G. Wang, P. Zhou, and J. Han, “Instance-aware distillation for efficient object detection in remote sensing images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1–11, 2023.
  4. C. Li, R. Cong, C. Guo, H. Li, C. Zhang, F. Zheng, and Y. Zhao, “A parallel down-up fusion network for salient object detection in optical remote sensing images,” Neurocomputing, vol. 415, pp. 411–420, 2020.
  5. W. Ma, N. Li, H. Zhu, L. Jiao, X. Tang, Y. Guo, and B. Hou, “Feature split–merge–enhancement network for remote sensing object detection,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–17, 2022.
  6. Y. Liu, Q. Li, Y. Yuan, Q. Du, and Q. Wang, “Abnet: Adaptive balanced network for multiscale object detection in remote sensing imagery,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–14, 2021.
  7. Z. Dong, M. Wang, Y. Wang, Y. Zhu, and Z. Zhang, “Object detection in high resolution remote sensing imagery based on convolutional neural networks with suitable object scale features,” IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 3, pp. 2104–2114, 2019.
  8. X. Sun, P. Wang, Z. Yan et al., “Fair1m: A benchmark dataset for fine-grained object recognition in high-resolution remote sensing imagery,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 184, pp. 116–130, 2022.
  9. D. Wan, R. Lu, S. Wang, S. Shen, T. Xu, and X. Lang, “Yolo-hr: Improved yolov5 for object detection in high-resolution optical remote sensing images,” Remote Sensing, vol. 15, no. 3, p. 614, 2023.
  10. E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le, “Autoaugment: Learning augmentation strategies from data,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp. 113–123.
  11. S. Tong and D. Koller, “Support vector machine active learning with applications to text classification,” Journal of machine learning research, vol. 2, no. Nov, pp. 45–66, 2001.
  12. Y. Gal, R. Islam, and Z. Ghahramani, “Deep bayesian active learning with image data,” in International conference on machine learning.   PMLR, 2017, pp. 1183–1192.
  13. S. Agarwal, H. Arora, S. Anand, and C. Arora, “Contextual diversity for active learning,” in 16th European Conference on Computer Vision.   Springer, 2020, pp. 137–153.
  14. T. Yuan, F. Wan, M. Fu, J. Liu, S. Xu, X. Ji, and Q. Ye, “Multiple instance active learning for object detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 5330–5339.
  15. W. Yu, S. Zhu, T. Yang, and C. Chen, “Consistency-based active learning for object detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 3951–3960.
  16. G. Wang, X. Zhang, Z. Peng, X. Jia, X. Tang, and L. Jiao, “Mol: Towards accurate weakly supervised remote sensing object detection via multi-view noisy learning,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 196, pp. 457–470, 2023.
  17. Y. Lv, B. Liu, J. Zhang, Y. Dai, A. Li, and T. Zhang, “Semi-supervised active salient object detection,” Pattern Recognition, vol. 123, p. 108364, 2022.
  18. P. Mi, J. Lin, Y. Zhou, Y. Shen, G. Luo, X. Sun, L. Cao, R. Fu, Q. Xu, and R. Ji, “Active teacher for semi-supervised object detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 14 482–14 491.
  19. A. Tarvainen and H. Valpola, “Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results,” Advances in neural information processing systems, vol. 30, 2017.
  20. G.-S. Xia, X. Bai, J. Ding, Z. Zhu, S. Belongie, J. Luo, M. Datcu, M. Pelillo, and L. Zhang, “Dota: A large-scale dataset for object detection in aerial images,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 3974–3983.
  21. K. Li, G. Wan, G. Cheng, L. Meng, and J. Han, “Object detection in optical remote sensing images: A survey and a new benchmark,” ISPRS journal of photogrammetry and remote sensing, vol. 159, pp. 296–307, 2020.
  22. Y.-C. Liu, C.-Y. Ma, Z. He, C.-W. Kuo, K. Chen, P. Zhang, B. Wu, Z. Kira, and P. Vajda, “Unbiased teacher for semi-supervised object detection,” nternational Conference on Learning Representations, 2021.
  23. T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in context,” in 13th European Conference on Computer Vision, 2014, pp. 740–755.
Citations (3)

Summary

We haven't generated a summary for this paper yet.