Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Real-Time Adaptive Safety-Critical Control with Gaussian Processes in High-Order Uncertain Models (2402.18946v2)

Published 29 Feb 2024 in cs.LG, cs.SY, and eess.SY

Abstract: This paper presents an adaptive online learning framework for systems with uncertain parameters to ensure safety-critical control in non-stationary environments. Our approach consists of two phases. The initial phase is centered on a novel sparse Gaussian process (GP) framework. We first integrate a forgetting factor to refine a variational sparse GP algorithm, thus enhancing its adaptability. Subsequently, the hyperparameters of the Gaussian model are trained with a specially compound kernel, and the Gaussian model's online inferential capability and computational efficiency are strengthened by updating a solitary inducing point derived from new samples, in conjunction with the learned hyperparameters. In the second phase, we propose a safety filter based on high-order control barrier functions (HOCBFs), synergized with the previously trained learning model. By leveraging the compound kernel from the first phase, we effectively address the inherent limitations of GPs in handling high-dimensional problems for real-time applications. The derived controller ensures a rigorous lower bound on the probability of satisfying the safety specification. Finally, the efficacy of our proposed algorithm is demonstrated through real-time obstacle avoidance experiments executed using both a simulation platform and a real-world 7-DOF robot.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and P. Tabuada, “Control barrier functions: Theory and applications,” in 2019 18th European Control Conference (ECC), pp. 3420–3431, 2019.
  2. Q. Nguyen and K. Sreenath, “Safety-critical control for dynamical bipedal walking with precise footstep placement,” IFAC-PapersOnLine, vol. 48, no. 27, pp. 147–154, 2015.
  3. T. D. Son and Q. Nguyen, “Safety-critical control for non-affine nonlinear systems with application on autonomous vehicle,” in 2019 IEEE 58th Conference on Decision and Control (CDC), pp. 7623–7628, 2019.
  4. Z. Bing, L. Knak, L. Cheng, F. O. Morin, K. Huang, and A. Knoll, “Meta-reinforcement learning in nonstationary and nonparametric environments,” IEEE Transactions on Neural Networks and Learning Systems, pp. 1–15, 2023.
  5. L. Wang, E. A. Theodorou, and M. Egerstedt, “Safe learning of quadrotor dynamics using barrier certificates,” in 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 2460–2465, 2018.
  6. Y. Chen, A. Singletary, and A. D. Ames, “Guaranteed obstacle avoidance for multi-robot operations with limited actuation: A control barrier function approach,” IEEE Control Systems Letters, vol. 5, no. 1, pp. 127–132, 2021.
  7. T. Beckers, J. Umlauft, and S. Hirche, “Stable model-based control with gaussian process regression for robot manipulators,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 3877–3884, 2017.
  8. A. J. Taylor and A. D. Ames, “Adaptive safety with control barrier functions,” in 2020 American Control Conference (ACC), pp. 1399–1405, 2020.
  9. Q. Nguyen and K. Sreenath, “Robust safety-critical control for dynamic robotics,” IEEE Transactions on Automatic Control, vol. 67, no. 3, pp. 1073–1088, 2022.
  10. B. T. Lopez, J.-J. E. Slotine, and J. P. How, “Robust adaptive control barrier functions: An adaptive and data-driven approach to safety,” IEEE Control Systems Letters, vol. 5, no. 3, pp. 1031–1036, 2021.
  11. J. Kocijan, Modelling and control of dynamic systems using Gaussian process models. Springer, 2016.
  12. P. Jagtap, G. J. Pappas, and M. Zamani, “Control barrier functions for unknown nonlinear systems using gaussian processes,” in 2020 59th IEEE Conference on Decision and Control (CDC), pp. 3699–3704, 2020.
  13. D. D. Fan, J. Nguyen, R. Thakker, N. Alatur, A.-a. Agha-mohammadi, and E. A. Theodorou, “Bayesian learning-based adaptive control for safety critical systems,” in 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 4093–4099, 2020.
  14. Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation: Representing model uncertainty in deep learning,” in international conference on machine learning, pp. 1050–1059, PMLR, 2016.
  15. J. Harrison, A. Sharma, and M. Pavone, “Meta-learning priors for efficient online bayesian regression,” in Algorithmic Foundations of Robotics XIII: Proceedings of the 13th Workshop on the Algorithmic Foundations of Robotics 13, pp. 318–337, Springer, 2020.
  16. T. D. Bui, C. Nguyen, and R. E. Turner, “Streaming sparse gaussian process approximations,” Advances in Neural Information Processing Systems, vol. 30, 2017.
  17. V. Dhiman, M. J. Khojasteh, M. Franceschetti, and N. Atanasov, “Control barriers in bayesian learning of system dynamics,” IEEE Transactions on Automatic Control, vol. 68, no. 1, pp. 214–229, 2023.
  18. F. Castañeda, J. J. Choi, B. Zhang, C. J. Tomlin, and K. Sreenath, “Pointwise feasibility of gaussian process-based safety-critical control under model uncertainty,” in 2021 60th IEEE Conference on Decision and Control (CDC), pp. 6762–6769, 2021.
  19. X. Xu, P. Tabuada, J. W. Grizzle, and A. D. Ames, “Robustness of control barrier functions for safety critical control,” IFAC-PapersOnLine, vol. 48, no. 27, pp. 54–61, 2015.
  20. M. Titsias, “Variational learning of inducing variables in sparse gaussian processes,” in Artificial intelligence and statistics, pp. 567–574, PMLR, 2009.
  21. F. Castaneda, J. J. Choi, B. Zhang, C. J. Tomlin, and K. Sreenath, “Gaussian process-based min-norm stabilizing controller for control-affine systems with uncertain input effects and dynamics,” in 2021 American Control Conference (ACC), pp. 3683–3690, IEEE, 2021.
  22. V. Gómez-Verdejo and M. Martínez-Ramón, “Adaptive sparse gaussian process,” arXiv preprint arXiv:2302.10325, 2023.
  23. L. Csató and M. Opper, “Sparse on-line gaussian processes,” Neural computation, vol. 14, no. 3, pp. 641–668, 2002.
  24. Y. He and Y. Zhao, “Adaptive robust control of uncertain euler–lagrange systems using gaussian processes,” IEEE Transactions on Neural Networks and Learning Systems, 2022, DOI: 10.1109/TNNLS.2022.3222405.
  25. Cambridge university press, 2004.
  26. N. Srinivas, A. Krause, S. M. Kakade, and M. W. Seeger, “Information-theoretic regret bounds for gaussian process optimization in the bandit setting,” IEEE transactions on information theory, vol. 58, no. 5, pp. 3250–3265, 2012.
  27. S. Dean, A. Taylor, R. Cosner, B. Recht, and A. Ames, “Guaranteeing safety of learned perception modules via measurement-robust control barrier functions,” in Conference on Robot Learning, pp. 654–670, PMLR, 2021.
  28. J. Buch, S.-C. Liao, and P. Seiler, “Robust control barrier functions with sector-bounded uncertainties,” IEEE Control Systems Letters, vol. 6, pp. 1994–1999, 2021.
  29. E. Bingham, J. P. Chen, M. Jankowiak, F. Obermeyer, N. Pradhan, T. Karaletsos, R. Singh, P. Szerlip, P. Horsfall, and N. D. Goodman, “Pyro: Deep universal probabilistic programming,” The Journal of Machine Learning Research, vol. 20, no. 1, pp. 973–978, 2019.
  30. G. Jocher, A. Chaurasia, and J. Qiu, “YOLO by Ultralytics,” 2023. Accessed: August 10, 2023.

Summary

We haven't generated a summary for this paper yet.