Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Probabilistic Lipschitzness and the Stable Rank for Comparing Explanation Models (2402.18863v2)

Published 29 Feb 2024 in cs.LG

Abstract: Explainability models are now prevalent within machine learning to address the black-box nature of neural networks. The question now is which explainability model is most effective. Probabilistic Lipschitzness has demonstrated that the smoothness of a neural network is fundamentally linked to the quality of post hoc explanations. In this work, we prove theoretical lower bounds on the probabilistic Lipschitzness of Integrated Gradients, LIME and SmoothGrad. We propose a novel metric using probabilistic Lipschitzness, normalised astuteness, to compare the robustness of explainability models. Further, we prove a link between the local Lipschitz constant of a neural network and its stable rank. We then demonstrate that the stable rank of a neural network provides a heuristic for the robustness of explainability models.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
  2. Y. Liu, T. Han, S. Ma, J. Zhang, Y. Yang, J. Tian, H. He, A. Li, M. He, Z. Liu, Z. Wu, L. Zhao, D. Zhu, X. Li, N. Qiang, D. Shen, T. Liu, and B. Ge, “Summary of ChatGPT-related research and perspective towards the future of large language models,” Meta-Radiology, vol. 1, no. 2, p. 100017, 2023.
  3. K. Millar, L. Simpson, A. Cheng, H. G. Chew, and C.-C. Lim, “Detecting botnet victims through graph-based machine learning,” 2021 International Conference on Machine Learning and Cybernetics (ICMLC), pp. 1–6, 2021.
  4. J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool, R. Bates, A. Žídek, A. Potapenko, A. Bridgland, C. Meyer, S. A. A. Kohl, A. J. Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer, S. Bodenstein, D. Silver, O. Vinyals, A. W. Senior, K. Kavukcuoglu, P. Kohli, and D. Hassabis, “Highly accurate protein structure prediction with alphafold,” Nature, vol. 596, no. 7873, pp. 583–589, 2021.
  5. T. J. Sejnowski, “The unreasonable effectiveness of deep learning in artificial intelligence,” Proceedings of the National Academy of Sciences, vol. 117, no. 48, pp. 30 033–30 038, 2020.
  6. C. Zednik, “Solving the black box problem: A normative framework for explainable artificial intelligence,” Philosophy & Technology, vol. 34, no. 2, pp. 265–288, 2021.
  7. Y. Dong, H. Su, B. Wu, Z. Li, W. Liu, T. Zhang, and J. Zhu, “Efficient decision-based black-box adversarial attacks on face recognition,” IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7706–7714, 2019.
  8. K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash, T. Kohno, and D. Song, “Robust physical-world attacks on deep learning visual classification,” IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1625–1634, 2018.
  9. C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus, “Intriguing properties of neural networks,” arXiv:1312.6199, 2013.
  10. E. Tjoa and C. Guan, “A survey on explainable artificial intelligence (xai): Toward medical xai,” IEEE Transactions on Neural Networks and Learning Systems, vol. 32, no. 11, pp. 4793–4813, 2021.
  11. S. Agarwal, S. Jabbari, C. Agarwal, S. Upadhyay, Z. S. Wu, and H. Lakkaraju, “Towards the unification and robustness of perturbation and gradient based explanations,” arXiv:2102.10618, 2021.
  12. D. Bacciu and D. Numeroso, “Explaining deep graph networks via input perturbation,” IEEE Transactions on Neural Networks and Learning Systems, vol. 34, no. 12, pp. 10 334–10 345, 2023.
  13. M. T. Ribeiro, S. Singh, and C. Guestrin, “"why should i trust you?": Explaining the predictions of any classifier,” arXiv:1602.04938, 2016.
  14. S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model predictions,” Proceedings of the 31st International Conference on Neural Information Processing Systems (NeurIPS), pp. 4768–4777, 2017.
  15. M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep networks,” Proceedings of the 34th International Conference on Machine Learning (ICML), vol. 70, pp. 3319–3328, 2017.
  16. D. Smilkov, N. Thorat, B. Kim, F. Viégas, and M. Wattenberg, “Smoothgrad: removing noise by adding noise,” arXiv:1706.03825, 2017.
  17. J.-B. Lamy, B. Sekar, G. Guezennec, J. Bouaud, and B. Séroussi, “Explainable artificial intelligence for breast cancer: A visual case-based reasoning approach,” Artificial Intelligence in Medicine, vol. 94, pp. 42–53, 2019.
  18. Z. Zhang, H. A. Hamadi, E. Damiani, C. Y. Yeun, and F. Taher, “Explainable artificial intelligence applications in cyber security: State-of-the-art in research,” IEEE Access, vol. 10, pp. 93 104–93 139, 2022.
  19. Z. Khan, D. Hill, A. Masoomi, J. Bone, and J. Dy, “Analyzing explainer robustness via lipschitzness of prediction functions,” arXiv:2206.12481, 2023.
  20. C.-K. Yeh, C.-Y. Hsieh, A. S. Suggala, D. I. Inouye, and P. Ravikumar, “On the (in)fidelity and sensitivity of explanations,” Proceedings of the 33rd International Conference on Neural Information Processing Systems, 2019.
  21. G. Montavon, W. Samek, and K.-R. Müller, “Methods for interpreting and understanding deep neural networks,” Digital Signal Processing, vol. 73, pp. 1–15, 2018.
  22. K. Scaman and A. Virmaux, “Lipschitz regularity of deep neural networks: analysis and efficient estimation,” Advances in Neural Information Processing Systems (NeurIPS), vol. 31, 2018.
  23. M. Jordan and A. G. Dimakis, “Exactly computing the local lipschitz constant of relu networks,” Advances in Neural Information Processing Systems (NeurIPS), vol. 33, pp. 7344–7353, 2020.
  24. S. Ramasinghe and S. Lucey, “Beyond periodicity: Towards a unifying framework for activations in coordinate-mlps,” arXiv:2111.15135, 2022.
  25. D. Alvarez-Melis and T. S. Jaakkola, “On the robustness of interpretability methods,” arXiv:1806.08049, 2018.
  26. R. Mangal, K. Sarangmath, A. V. Nori, and A. Orso, “Probabilistic lipschitz analysis of neural networks,” International Static Analysis Symposium (SAS), pp. 274–309, 2020.
  27. A. Barredo Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado, S. Garcia, S. Gil-Lopez, D. Molina, R. Benjamins, R. Chatila, and F. Herrera, “Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI,” Information Fusion, vol. 58, p. 82–115, 2020.
  28. D. Lundstrom, T. Huang, and M. Razaviyayn, “A rigorous study of integrated gradients method and extensions to internal neuron attributions,” arXiv:2202.11912, 2022.
  29. T. Avant and K. A. Morgansen, “Analytical bounds on the local lipschitz constants of relu networks,” IEEE Transactions on Neural Networks and Learning Systems, pp. 1–12, 2023.
  30. H. Gouk, E. Frank, B. Pfahringer, and M. J. Cree, “Regularisation of neural networks by enforcing lipschitz continuity,” Machine Learning, vol. 110, pp. 393–416, 2020.
  31. P. L. Bartlett, D. J. Foster, and M. J. Telgarsky, “Spectrally-normalized margin bounds for neural networks,” Advances in Neural Information Processing Systems (NeurIPS), vol. 30, 2017.
  32. B. Neyshabur, R. Tomioka, and N. Srebro, “Norm-based capacity control in neural networks,” Proceedings of the 28th Conference on Learning Theory, vol. 40, pp. 1376–1401, 2015.
  33. A. Sanyal, P. Torr, and P. Dokania, “Stable rank normalization for improved generalization in neural networks and gans,” Eighth International Conference on Learning Representations (ICLR), 2020.
  34. P. Bommer, M. Kretschmer, A. Hedström, D. Bareeva, and M. M. C. Höhne, “Finding the right XAI method – a guide for the evaluation and ranking of explainable AI methods in climate science,” arXiv:2303.00652, 2023.
  35. Z. Wang, H. Wang, S. Ramkumar, M. Fredrikson, P. Mardziel, and A. Datta, “Smoothed geometry for robust attribution,” Proceedings of the 34th International Conference on Neural Information Processing Systems, 2020.
Citations (1)

Summary

We haven't generated a summary for this paper yet.