Taking Second-life Batteries from Exhausted to Empowered using Experiments, Data Analysis, and Health Estimation (2402.18859v2)
Abstract: The reuse of retired electric vehicle batteries in grid energy storage offers environmental and economic benefits. This study concentrates on health monitoring algorithms for retired batteries deployed in grid storage. Over 15 months of testing, we collect, analyze, and publicize a dataset of second-life batteries, implementing a cycling protocol simulating grid energy storage load profiles within a 3-4 V voltage window. Four machine-learning-based health estimation models, relying on online-accessible features and initial capacity, are compared, with the selected model achieving a mean absolute percentage error below 2.3% on test data. Additionally, an adaptive online health estimation algorithm is proposed by integrating a clustering-based method, thus limiting estimation errors during online deployment. These results showcase the feasibility of repurposing retired batteries for second-life applications. Based on obtained data and power demand, these second-life batteries exhibit potential for over a decade of grid energy storage use.
- M. B. I. Team, “Battery 2030: Resilient, sustainable, and circular,” McKinsey Company, Tech. Rep., 2023.
- H. Engel, P. Hertzke, and G. Siccardo, “Second-life EV batteries: The newest value pool in energy storage,” McKinsey Center for Future Mobility, Global Editorial Services, New York City, Tech. Rep., 2019.
- “Tesla 2020 Impact Report,” Tesla Inc., Tech. Rep., 2020.
- J. Zhu, I. Mathews, D. Ren, W. Li, D. Cogswell, B. Xing, T. Sedlatschek, S. N. R. Kantareddy, M. Yi, T. Gao, Y. Xia, Q. Zhou, T. Wierzbicki, and M. Z. Bazant, “End-of-life or second-life options for retired electric vehicle batteries,” Cell Reports Physical Science, vol. 2, no. 8, p. 100537, 2021. [Online]. Available: https://doi.org/10.1016/j.xcrp.2021.100537
- M. A. Pellow, C. J. Emmott, C. J. Barnhart, and S. M. Benson, “Hydrogen or batteries for grid storage? A net energy analysis,” Energy and Environmental Science, vol. 8, no. 7, pp. 1938–1952, 2015.
- E. Martinez-Laserna, I. Gandiaga, E. Sarasketa-Zabala, J. Badeda, D. I. Stroe, M. Swierczynski, and A. Goikoetxea, “Battery second life: Hype, hope or reality? A critical review of the state of the art,” Renewable and Sustainable Energy Reviews, vol. 93, no. October 2017, pp. 701–718, 2018. [Online]. Available: https://doi.org/10.1016/j.rser.2018.04.035
- H. Ambrose, D. Gershenson, A. Gershenson, and D. Kammen, “Driving rural energy access: a second-life application for electric-vehicle batteries,” Environmental Research Letters, vol. 9, no. 9, p. 094004, sep 2014. [Online]. Available: https://iopscience.iop.org/article/10.1088/1748-9326/9/9/094004https://iopscience.iop.org/article/10.1088/1748-9326/9/9/094004/meta
- G. L. Plett, Battery Management Systems-Battery Modeling.
- Rejoule, “Https://rejouleenergy.com/.”
- Relectrify, “https://www.relectrify.com/.”
- Elektro-Automatik, “https://elektroautomatik.com/en/industries/battery-recycling/second-life/.”
- Smartville, “https://smartville.io/.”
- X. Cui, A. Ramyar, J. B. Siegel, M. Peyman, A. G. Stefanopoulou, A.-T. Avestruz, P. Mohtat, V. Contreras, J. B. Siegel, A. G. Stefanopoulou, and A.-T. Avestruz, “Lite-Sparse Hierarchical Partial Power Processing for Second-Use Battery Energy Storage Systems,” IEEE Access, pp. 1–17, aug 2022.
- X. Hu, X. Deng, F. Wang, Z. Deng, X. Lin, R. Teodorescu, and M. G. Pecht, “A Review of Second-Life Lithium-Ion Batteries for Stationary Energy Storage Applications,” Proceedings of the IEEE, vol. 110, no. 6, pp. 735–753, jun 2022.
- G. Pozzato, S. B. Lee, and S. Onori, “Modeling Degradation for Second-life Battery: Preliminary Results,” in 2021 IEEE Conference on Control Technology and Applications (CCTA), feb 2021. [Online]. Available: http://arxiv.org/abs/2102.03715
- A. Allam and S. Onori, “Online Capacity Estimation for Lithium-Ion Battery Cells via an Electrochemical Model-Based Adaptive Interconnected Observer,” IEEE Transactions on Control Systems Technology, vol. 29, no. 4, pp. 1636–1651, sep 2020.
- W. Li, J. Zhu, Y. Xia, M. B. Gorji, and T. Wierzbicki, “Data-Driven Safety Envelope of Lithium-Ion Batteries for Electric Vehicles,” Joule, vol. 3, no. 11, pp. 2703–2715, nov 2019.
- D. P. Finegan and S. J. Cooper, “Battery Safety: Data-Driven Prediction of Failure,” Joule, vol. 3, no. 11, pp. 2599–2601, nov 2019.
- A. Bhatt, W. Ongsakul, N. Madhu, and J. G. Singh, “Machine learning-based approach for useful capacity prediction of second-life batteries employing appropriate input selection,” International Journal of Energy Research, vol. 45, no. 15, pp. 21 023–21 049, dec 2021.
- Y. Jiang, J. Jiang, C. Zhang, W. Zhang, Y. Gao, and N. Li, “State of health estimation of second-life LiFePO4 batteries for energy storage applications,” Journal of Cleaner Production, vol. 205, pp. 754–762, dec 2018.
- C. Zhang, J. Jiang, W. Zhang, Y. Wang, S. M. Sharkh, and R. Xiong, “A novel data-driven fast capacity estimation of spent electric vehicle lithium-ion batteries,” Energies, vol. 7, no. 12, pp. 8076–8094, 2014. [Online]. Available: https://www.mdpi.com/1996-1073/7/12/8076
- J. Wei, G. Dong, and Z. Chen, “Remaining useful life prediction and state of health diagnosis for lithium-ion batteries using particle filter and support vector regression,” IEEE Transactions on Industrial Electronics, vol. 65, no. 7, pp. 5634–5643, 2018.
- A. Takahashi, A. Allam, and S. Onori, “Evaluating the feasibility of batteries for second-life applications using machine learning,” iScience, vol. 26, no. 4, p. 106547, 2023. [Online]. Available: https://doi.org/10.1016/j.isci.2023.106547
- I. Sanz-Gorrachategui, P. Pastor-Flores, M. Pajovic, Y. Wang, P. V. Orlik, C. Bernal-Ruiz, A. Bono-Nuez, and J. S. Artal-Sevil, “Remaining Useful Life Estimation for LFP Cells in Second-Life Applications,” IEEE Transactions on Instrumentation and Measurement, vol. 70, 2021.
- E. Martinez-Laserna, E. Sarasketa-Zabala, I. Villarreal Sarria, D. I. Stroe, M. Swierczynski, A. Warnecke, J. M. Timmermans, S. Goutam, N. Omar, and P. Rodriguez, “Technical Viability of Battery Second Life: A Study from the Ageing Perspective,” IEEE Transactions on Industry Applications, vol. 54, no. 3, pp. 2703–2713, 2018.
- E. Braco, I. San Martin, A. Berrueta, P. Sanchis, and A. Ursua, “Experimental Assessment of First- And Second-Life Electric Vehicle Batteries: Performance, Capacity Dispersion, and Aging,” IEEE Transactions on Industry Applications, vol. 57, no. 4, pp. 4107–4117, jul 2021.
- J. Lin, X. Liu, S. Li, C. Zhang, and S. Yang, “A review on recent progress, challenges and perspective of battery thermal management system,” International Journal of Heat and Mass Transfer, vol. 167, p. 120834, 2021.
- D. Gräf, J. Marschewski, L. Ibing, D. Huckebrink, M. Fiebrandt, G. Hanau, and V. Bertsch, “What drives capacity degradation in utility-scale battery energy storage systems? The impact of operating strategy and temperature in different grid applications,” Journal of Energy Storage, vol. 47, no. March 2021, 2022.
- D. Yang, X. Zhang, R. Pan, Y. Wang, and Z. Chen, “A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve,” Journal of Power Sources, vol. 384, pp. 387–395, Apr. 2018.
- B. R. Chen, C. M. Walker, S. Kim, M. R. Kunz, T. R. Tanim, and E. J. Dufek, “Battery aging mode identification across NMC compositions and designs using machine learning,” Joule, vol. 6, no. 12, pp. 2776–2793, dec 2022. [Online]. Available: https://doi.org/10.1016/j.joule.2022.10.016
- Y. Zhou, M. Huang, Y. Chen, and Y. Tao, “A novel health indicator for on-line lithium-ion batteries remaining useful life prediction,” Journal of Power Sources, vol. 321, pp. 1–10, 2016. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S037877531630492X
- Y. Zhang, T. Wik, J. Bergström, M. Pecht, and C. Zou, “A machine learning-based framework for online prediction of battery ageing trajectory and lifetime using histogram data,” Journal of Power Sources, vol. 526, p. 231110, 2022.
- C. She, Y. Li, C. Zou, T. Wik, Z. Wang, and F. Sun, “Offline and online blended machine learning for lithium-ion battery health state estimation,” IEEE Transactions on Transportation Electrification, vol. 8, no. 2, pp. 1604–1618, 2021.
- Y. Xing, E. W. Ma, K.-L. Tsui, and M. Pecht, “An ensemble model for predicting the remaining useful performance of lithium-ion batteries,” Microelectronics Reliability, vol. 53, no. 6, pp. 811–820, 2013. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0026271412005227
- K. Moy, S. B. Lee, S. Harris, and S. Onori, “Design and validation of synthetic duty cycles for grid energy storage dispatch using lithium-ion batteries,” Advances in Applied Energy, vol. 4, p. 100065, 2021.
- C. P. Aiken, E. R. Logan, A. Eldesoky, H. Hebecker, J. Oxner, J. Harlow, M. Metzger, and J. Dahn, “Li [\ceNi0.5Mn0.3Co0.2] \ceO2 as a superior alternative to \ceLiFePO4 for long-lived low voltage li-ion cells,” Journal of The Electrochemical Society, vol. 169, no. 5, p. 050512, 2022.
- Y. Sun, S. Saxena, and M. Pecht, “Derating guidelines for lithium-ion batteries,” Energies, vol. 11, no. 12, 2018.
- S. Watanabe, M. Kinoshita, T. Hosokawa, K. Morigaki, and K. Nakura, “Capacity fading of LiAlyNi1-x-yCoxO 2 cathode for lithium-ion batteries during accelerated calendar and cycle life tests (effect of depth of discharge in charge-discharge cycling on the suppression of the micro-crack generation of LiAlyNi 1-x-yCoxO2 parti,” Journal of Power Sources, vol. 260, pp. 50–56, 2014. [Online]. Available: http://dx.doi.org/10.1016/j.jpowsour.2014.02.103
- K. Moy and S. Onori, “Synthetic Grid Storage Duty Cycles for Second-Life Lithium-Ion Battery Experiments,” SAE Technical Papers, pp. 1–9, 2023.
- S. Ma, M. Jiang, P. Tao, C. Song, J. Wu, J. Wang, T. Deng, and W. Shang, “Temperature effect and thermal impact in lithium-ion batteries: A review,” Progress in Natural Science: Materials International, vol. 28, no. 6, pp. 653–666, 2018.
- C. G. Moral, D. F. Laborda, L. S. Alonso, J. M. Guerrero, D. Fernandez, C. Rivas Pereda, and D. D. Reigosa, “Battery Internal Resistance Estimation Using a Battery Balancing System Based on Switched Capacitors,” IEEE Transactions on Industry Applications, vol. 56, no. 5, pp. 5363–5374, 2020.
- X. Cui, M. A. Khan, R. Sharma, S. Singh, and S. Onori, “Adaptive health monitoring of second-life batteries,” American Control Conference (ACC), Toronto, Canada, 2024.
- H. Peng, F. Long, and C. Ding, “Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy,” IEEE transactions on pattern analysis and machine intelligence, vol. 27, no. 8, pp. 1226–1238, aug 2005. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/16119262/
- D. Anseán, V. M. García, M. González, C. Blanco-Viejo, J. C. Viera, Y. F. Pulido, and L. Sánchez, “Lithium-ion battery degradation indicators via incremental capacity analysis,” IEEE Transactions on Industry Applications, vol. 55, no. 3, pp. 2992–3002, 2019.
- C. Wissler, “The spearman correlation formula,” Science, vol. 22, no. 558, pp. 309–311, 1905.
- H. Zou and T. Hastie, “Regularization and variable selection via the elastic net,” Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 67, no. 2, pp. 301–320, apr 2005.
- A. J. Smola and B. Scholkopf, “A tutorial on support vector regression,” Statistics and Computing, vol. 14, pp. 199–222, 2004.
- E. Schulz, M. Speekenbrink, and A. Krause, “A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions,” Journal of Mathematical Psychology, vol. 85, pp. 1–16, 2018.
- M. R. Segal, “Machine Learning Benchmarks and Random Forest Regression ,” apr 2004.
- T. K. Kim, “T test as a parametric statistic,” Korean journal of anesthesiology, vol. 68, no. 6, pp. 540–546, 2015.