Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Acoustic tactile sensing for mobile robot wheels (2402.18682v1)

Published 28 Feb 2024 in cs.RO

Abstract: Tactile sensing in mobile robots remains under-explored, mainly due to challenges related to sensor integration and the complexities of distributed sensing. In this work, we present a tactile sensing architecture for mobile robots based on wheel-mounted acoustic waveguides. Our sensor architecture enables tactile sensing along the entire circumference of a wheel with a single active component: an off-the-shelf acoustic rangefinder. We present findings showing that our sensor, mounted on the wheel of a mobile robot, is capable of discriminating between different terrains, detecting and classifying obstacles with different geometries, and performing collision detection via contact localization. We also present a comparison between our sensor and sensors traditionally used in mobile robots, and point to the potential for sensor fusion approaches that leverage the unique capabilities of our tactile sensing architecture. Our findings demonstrate that autonomous mobile robots can further leverage our sensor architecture for diverse mapping tasks requiring knowledge of terrain material, surface topology, and underlying structure.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. E. Marti, M. A. De Miguel, F. Garcia, and J. Perez, “A review of sensor technologies for perception in automated driving,” IEEE Intelligent Transportation Systems Magazine, vol. 11, no. 4, pp. 94–108, 2019.
  2. E. A. Stone, N. F. Lepora, and D. A. Barton, “Walking on tactip toes: A tactile sensing foot for walking robots,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2020, pp. 9869–9875.
  3. F. R. Hogan, J.-F. Tremblay, B. H. Baghi, M. Jenkin, K. Siddiqi, and G. Dudek, “Finger-sts: Combined proximity and tactile sensing for robotic manipulation,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 10 865–10 872, 2022.
  4. S. Dong, W. Yuan, and E. H. Adelson, “Improved gelsight tactile sensor for measuring geometry and slip. in 2017 ieee,” in RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 137–144.
  5. Y. Chen, Y. Marchetti, and Y. R. Gel, “Deepening the sense of touch in planetary exploration with geometric and topological deep learning,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 17, 2021, pp. 15 278–15 285.
  6. S. Lilge, T. D. Barfoot, and J. Burgner-Kahrs, “Continuum robot state estimation using gaussian process regression on se (3),” The International Journal of Robotics Research, vol. 41, no. 13-14, pp. 1099–1120, 2022.
  7. H. Zhao, K. O’brien, S. Li, and R. F. Shepherd, “Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides,” Science robotics, vol. 1, no. 1, p. eaai7529, 2016.
  8. C. To, T. Hellebrekers, J. Jung, S. J. Yoon, and Y.-L. Park, “A soft optical waveguide coupled with fiber optics for dynamic pressure and strain sensing,” IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 3821–3827, 2018.
  9. S. Suresh, M. Bauza, K.-T. Yu, J. G. Mangelson, A. Rodriguez, and M. Kaess, “Tactile slam: Real-time inference of shape and pose from planar pushing,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 11 322–11 328.
  10. X. Guo, B. Blaise, J. Molnar, J. Coholich, S. Padte, Y. Zhao, and F. L. Hammond, “Soft foot sensor design and terrain classification for dynamic legged locomotion,” in 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft).   IEEE, 2020, pp. 550–557.
  11. L. Ding, P. Xu, Z. Li, R. Zhou, H. Gao, Z. Deng, and G. Liu, “Pressing and rubbing: physics-informed features facilitate haptic terrain classification for legged robots,” IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 5990–5997, 2022.
  12. M. A. Hoepflinger, C. D. Remy, M. Hutter, L. Spinello, and R. Siegwart, “Haptic terrain classification for legged robots,” in 2010 IEEE International Conference on Robotics and Automation.   IEEE, 2010, pp. 2828–2833.
  13. A. Albini, F. Grella, P. Maiolino, and G. Cannata, “Exploiting distributed tactile sensors to drive a robot arm through obstacles,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 4361–4368, 2021.
  14. R. Thomasson, E. Roberge, M. R. Cutkosky, and J.-P. Roberge, “Going in blind: Object motion classification using distributed tactile sensing for safe reaching in clutter,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2022, pp. 1440–1446.
  15. Y. Marchetti, J. Lightholder, E. Junkins, M. Cross, L. Mandrake, and A. Fraeman, “Barefoot rover: a sensor-embedded rover wheel demonstrating in-situ engineering and science extractions using machine learning,” in 2020 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2020, pp. 6000–6006.
  16. C. Liu, T. M. Huh, S. X. Chen, L. Lu, F. Kopsaftopoulos, M. R. Cutkosky, and F.-K. Chang, “Design of active sensing smart skin for incipient slip detection in robotics applications,” IEEE/ASME Transactions on Mechatronics, 2022.
  17. R. Edlinger, C. Föls, R. Froschauer, and A. Nüchter, “Stability metrics and improved odometry prediction for tracked vehicles with tactile sensors,” in 2021 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR).   IEEE, 2021, pp. 77–83.
  18. A. Mardani and S. Ebrahimi, “Simultaneous surface scanning and stability analysis of wheeled mobile robots using a new spatial sensitive shield sensor,” Robotics and Autonomous Systems, vol. 98, pp. 1–14, 2017.
  19. T. Ichimura, “3d-odometry using tactile wheels and gyros: Localization simulation of a bike robot,” in 2016 16th International Conference on Control, Automation and Systems (ICCAS).   IEEE, 2016, pp. 1349–1355.
  20. H. Tomioka, M. Ikeda, K. Or, R. Niiyama, and Y. Kuniyoshi, “Autonomous wheeled locomotion on irregular terrain with tactile sensing,” in Climbing and Walking Robots Conference.   Springer, 2022, pp. 107–118.
  21. K. Nagatani, A. Ikeda, K. Sato, and K. Yoshida, “Accurate estimation of drawbar pull of wheeled mobile robots traversing sandy terrain using built-in force sensor array wheel,” in 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.   IEEE, 2009, pp. 2373–2378.
  22. X. A. Wu, T. M. Huh, A. Sabin, S. A. Suresh, and M. R. Cutkosky, “Tactile sensing and terrain-based gait control for small legged robots,” IEEE Transactions on Robotics, vol. 36, no. 1, pp. 15–27, 2019.
  23. L. Van Duong et al., “Large-scale vision-based tactile sensing for robot links: Design, modeling, and evaluation,” IEEE Transactions on Robotics, vol. 37, no. 2, pp. 390–403, 2020.
  24. C. Pan, M. Lepert, S. Yuan, R. Antonova, and J. Bohg, “In-hand manipulation of unknown objects with tactile sensing for insertion,” in 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2023, pp. 8765–8771.
  25. Q. K. Luu, N. H. Nguyen et al., “Simulation, learning, and application of vision-based tactile sensing at large scale,” IEEE Transactions on Robotics, 2023.
  26. N. M. D. Le, N. H. Nguyen, D. A. Nguyen, T. D. Ngo et al., “Viart: Vision-based soft tactile sensing for autonomous robotic vehicles,” IEEE/ASME Transactions on Mechatronics, 2023.
  27. G. Zhang, Y. Du, Y. Zhang, and M. Y. Wang, “A tactile sensing foot for single robot leg stabilization,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 14 076–14 082.
  28. Y. Lin, D. Chiasson, and P. B. Shull, “Wearable water-filled soft transparent pressure sensor based on acoustic guided waves,” in 2022 IEEE International Ultrasonics Symposium (IUS).   IEEE, 2022, pp. 1–4.
  29. S. K. Dwivedi, M. Vishwakarma, and A. Soni, “Advances and researches on non destructive testing: A review,” Materials Today: Proceedings, vol. 5, no. 2, pp. 3690–3698, 2018.
  30. H. Jang, S. Yoon, and A. Kim, “Multi-session underwater pose-graph slam using inter-session opti-acoustic two-view factor,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 11 668–11 674.
  31. X. Fan, D. Lee, L. Jackel, R. Howard, D. Lee, and V. Isler, “Enabling low-cost full surface tactile skin for human robot interaction,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 1800–1807, 2022.
  32. C. E. Tejada, J. McIntosh, K. A. Bergen, S. Boring, D. Ashbrook, and A. Marzo, “Echotube: Robust touch sensing along flexible tubes using waveguided ultrasound,” in Proceedings of the 2019 ACM international conference on interactive surfaces and spaces, 2019, pp. 147–155.
  33. J.-B. Chossat and P. B. Shull, “Soft acoustic waveguides for strain, deformation, localization, and twist measurements,” IEEE Sensors Journal, vol. 21, no. 1, pp. 222–230, 2020.
  34. G. Zöller, V. Wall, and O. Brock, “Active acoustic contact sensing for soft pneumatic actuators,” in 2020 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2020, pp. 7966–7972.
  35. K. Randika and K. Takemura, “Estimating the shape of soft pneumatic actuators using active vibroacoustic sensing,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2021, pp. 7189–7194.
  36. S. Lu and H. Culbertson, “Active acoustic sensing for robot manipulation,” in 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2023, pp. 3161–3168.
  37. S. Mikogai, B. Kazumi, and K. Takemura, “Contact point estimation along air tube based on acoustic sensing of pneumatic system noise,” IEEE Robotics and Automation Letters, vol. 5, no. 3, pp. 4618–4625, 2020.
  38. M. S. Li, T. M. Huh, C. R. Yahnker, and H. S. Stuart, “Resonant pneumatic tactile sensing for soft grippers,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 10 105–10 111, 2022.
  39. V. Wall, G. Zöller, and O. Brock, “Passive and active acoustic sensing for soft pneumatic actuators,” The International Journal of Robotics Research, vol. 42, no. 3, pp. 108–122, 2023.
  40. P. Giguere and G. Dudek, “A simple tactile probe for surface identification by mobile robots,” IEEE Transactions on Robotics, vol. 27, no. 3, pp. 534–544, 2011.
  41. S. S. Kannan, W. Jo, R. Parasuraman, and B.-C. Min, “Material mapping in unknown environments using tapping sound,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2020, pp. 4855–4861.
  42. M. Lauria, Y. Piguet, and R. Siegwart, “Octopus: an autonomous wheeled climbing robot,” in Proceedings of the fifth international conference on climbing and walking robots (CLAWAR’02), 2002, pp. 315–322.
  43. C. Yao, F. Xue, Z. Wang, Y. Yuan, Z. Zhu, L. Ding, and Z. Jia, “Wheel vision: Wheel-terrain interaction measurement and analysis using a sensorized transparent wheel on deformable terrains,” IEEE Robotics and Automation Letters, 2023.
  44. A. Maier, S. Steidl, V. Christlein, and J. Hornegger, “Medical imaging systems: An introductory guide,” 2018.
  45. M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381–395, 1981.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

HackerNews