Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Breakdown of the static dielectric screening approximation of Coulomb interactions in atomically thin semiconductors (2402.18639v3)

Published 28 Feb 2024 in cond-mat.mes-hall and cond-mat.mtrl-sci

Abstract: Coulomb interactions in atomically thin materials are uniquely sensitive to variations in the dielectric screening of the environment, which can be used to control quasiparticles and exotic quantum many-body phases. A static approximation of the dielectric response, where increased dielectric screening is predicted to cause an energy redshift of the exciton resonance, has been until now sufficient. Here, we use charge-tunable exciton resonances to study screening effects in transition metal dichalcogenide monolayers embedded in materials with dielectric constants ranging from 4 to more than 1000. In contrast to expectations, we observe a blueshift of the exciton resonance exceeding 30 meV for larger dielectric constant environments. By employing a dynamical screening model, we find that while the exciton binding energy remains mostly controlled by the static dielectric response, the exciton self-energy is dominated by the high-frequency response. Dielectrics with markedly different static and high-frequency screening enable the selective addressing of distinct many-body effects in layered materials and their heterostructures, expanding the tunability range and offering new routes to detect and control correlated quantum many-body states and to design optoelectronic and quantum devices.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (13)
  1. K. F. Mak and J. Shan, Nature Nanotechnology 17, 686 (2022).
  2. N. S. Rytova, Screened potential of a point charge in a thin film (2020), arxiv:1806.00976 .
  3. L. V. Keldysh, JETP Letters 29, 658 (1979).
  4. P. Cudazzo, I. V. Tokatly, and A. Rubio, Physical Review B 84, 085406 (2011).
  5. M. M. Fogler, L. V. Butov, and K. S. Novoselov, Nature Communications 5, 4555 (2014).
  6. R. H. Lyddane, R. G. Sachs, and E. Teller, Physical Review 59, 673 (1941).
  7. D. Van Tuan, M. Yang, and H. Dery, Physical Review B 98, 125308 (2018).
  8. Y. Cho and T. C. Berkelbach, Physical Review B 97, 041409 (2018).
  9. R. C. Neville, B. Hoeneisen, and C. A. Mead, Journal of Applied Physics 43, 2124 (1972).
  10. B. Aslan, M. Deng, and T. F. Heinz, Physical Review B 98, 115308 (2018).
  11. E. E. Salpeter and H. A. Bethe, Physical Review 84, 1232 (1951).
  12. F. J. Dyson, Physical Review 75, 1736 (1949).
  13. H. Pan, F. Wu, and S. Das Sarma, Physical Review B 102, 201104 (2020).
Citations (3)

Summary

We haven't generated a summary for this paper yet.