JCLEC-MO: a Java suite for solving many-objective optimization engineering problems (2402.18616v1)
Abstract: Although metaheuristics have been widely recognized as efficient techniques to solve real-world optimization problems, implementing them from scratch remains difficult for domain-specific experts without programming skills. In this scenario, metaheuristic optimization frameworks are a practical alternative as they provide a variety of algorithms composed of customized elements, as well as experimental support. Recently, many engineering problems require to optimize multiple or even many objectives, increasing the interest in appropriate metaheuristic algorithms and frameworks that might integrate new specific requirements while maintaining the generality and reusability principles they were conceived for. Based on this idea, this paper introduces JCLEC-MO, a Java framework for both multi- and many-objective optimization that enables engineers to apply, or adapt, a great number of multi-objective algorithms with little coding effort. A case study is developed and explained to show how JCLEC-MO can be used to address many-objective engineering problems, often requiring the inclusion of domain-specific elements, and to analyze experimental outcomes by means of conveniently connected R utilities.
- Diversity Management in Evolutionary Many-Objective Optimization. IEEE T. Evol. Comput. 15, 183–195. doi:10.1109/TEVC.2010.2058117.
- A Decomposition-Based Evolutionary Algorithm for Many Objective Optimization. IEEE T. Evol. Comput. 19, 445–460. doi:10.1109/TEVC.2014.2339823.
- A Global Optimisation Toolbox for Massively Parallel Engineering Optimisation, in: 4th International Conference on Astrodynamics Tools and Techniques.
- PISA – A Platform and Programming Language Independent Interface for Search Algorithms, in: Evolutionary Multi-Criterion Optimization (EMO 2003), Springer. pp. 494–508. doi:10.1007/3-540-36970-8_35.
- A survey on optimization metaheuristics. Inf. Sci. 237, 82–117. doi:10.1016/j.ins.2013.02.041.
- Evolutionary Many-Objective Optimization of Hybrid Electric Vehicle Control: From General Optimization to Preference Articulation. IEEE T. Emerging Topics in Computational Intelligence 1, 97–111. doi:10.1109/TETCI.2017.2669104.
- Evolutionary Algorithms for Solving Multi-Objective Problems. 2nd ed., Springer. doi:10.1007/978-0-387-36797-2.
- An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints. IEEE T. Evol. Comput. 18, 577–601. doi:10.1109/TEVC.2013.2281535.
- Multi objective particle swarm optimization algorithm for the design of efficient ATO speed profiles in metro lines. Eng. Appl. Artif. Intell. 29, 43–53. doi:10.1016/j.engappai.2013.12.015.
- jMetal: A Java framework for multi-objective optimization. Adv. Eng. Softw. 42, 760–771. doi:10.1016/j.advengsoft.2011.05.014.
- Introduction to Evolutionary Computing. 2nd edition ed., Springer -Verlag Berlin Heidelberg.
- Software review: the HeuristicLab framework. Genet. Program. Evol. M. 15, 215–218. doi:10.1007/s10710-014-9214-4.
- A new indicator-based many-objective ant colony optimizer for continuous search spaces. Swarm Intell. 11, 71–100. doi:10.1007/s11721-017-0133-x.
- Many Objective Particle Swarm Optimization. Inf. Sci. 374, 115–134. doi:10.1016/j.ins.2016.09.026.
- Genericity in evolutionary computation software tools: principles and case-study. Int. J. Artif. Intell. T. 15, 173–194. doi:10.1142/S021821300600262X.
- Design Patterns: Elements of Reusable Object-Oriented Software. 2nd edition ed., Addison Wesley.
- MOEA Framework. Version 2.12. http://www.moeaframework.org (Last accessed 22th March 2018).
- An open source framework for many-objective robust decision making. Environ. Model. Softw. 74, 114–129. doi:10.1016/j.envsoft.2015.07.014.
- PyGMO and PyKEP: Open Source Tools for Massively Parallel Optimization in Astrodynamics (The Case of Interplanetary Trajectory Optimization), in: 5th International Conference on Astrodynamics Tools and Techniques (ICATT). URL: http://arxiv.org/abs/1004.3824.
- Multi-objective optimization using genetic algorithms: A tutorial. Reliab. Eng. & Syst. Saf. 91, 992–1007. doi:10.1016/j.ress.2005.11.018.
- The EvA2 Optimization Framework, in: 4th International Learning and Intelligent Optimization Conference (LION), pp. 247–250. doi:10.1007/978-3-642-13800-3_27.
- Particle Swarm Optimization Applications to Mechanical Engineering - A Review. Materials Today: Proceedings 2, 2631–2639. doi:10.1016/j.matpr.2015.07.223. 4th Int. Conf. on Materials Processing and Characterization.
- Many-Objective Evolutionary Algorithms: A Survey. ACM Comput. Surv. 48, 13:1–35. doi:10.1145/2792984.
- Risk design optimization using many-objective evolutionary algorithm with application to performance-based wind engineering of tall buildings. Struct. Saf. 48, 1–14. doi:10.1016/j.strusafe.2014.01.002.
- A software framework based on a conceptual unified model for evolutionary multiobjective optimization: ParadisEO-MOEO. Eur. J. Oper. Res. 209, 104–112. doi:10.1016/j.ejor.2010.07.023.
- Including preferences into a multiobjective evolutionary algorithm to deal with many-objective engineering optimization problems. Inf. Sci. 277, 1–20. doi:10.1016/j.ins.2014.04.023.
- A survey on multi-objective evolutionary algorithms for many-objective problems. Comput. Optim. Appl. 58, 707–756. doi:10.1007/s10589-014-9644-1.
- Opt4J: A Modular Framework for Meta-heuristic Optimization, in: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation (GECCO’11), pp. 1723–1730. doi:10.1145/2001576.2001808.
- ECJ Then and Now, in: Proc. Companion Publication 2017 Ann. Genetic and Evolutionary Computation Conference, ACM. pp. 1223–1230. doi:10.1145/3067695.3082467.
- An artificial bee colony algorithm for multi-objective optimisation. Appl. Soft Comput. 50, 235–251. doi:10.1016/j.asoc.2016.11.014.
- Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art. Int. J. Comput.l Intell. Research 2, 287–308.
- Survey of multi-objective optimization methods for engineering. Struct. Multidiscipl. Optim. 26, 369–395. doi:10.1007/s00158-003-0368-6.
- Swarm Intelligence in Multiple and Many Objectives Optimization: A Survey and Topical Study on EEG Signal Analysis, in: Multi-objective Swarm Intelligence. Springer Berlin Heidelberg. volume 592 of Studies in Computational Intelligence, pp. 27–73. doi:10.1007/978-3-662-46309-3_2.
- Redesigning the jMetal Multi-Objective Optimization Framework, in: Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation, ACM. pp. 1093–1100. doi:10.1145/2739482.2768462.
- Metaheuristic optimization frameworks: a survey and benchmarking. Soft Comput. 16, 527–561. doi:10.1007/s00500-011-0754-8.
- Particle swarm optimization. Swarm Intell. 1, 33–57. doi:10.1007/s11721-007-0002-0.
- An Extensible JCLEC-based Solution for the Implementation of Multi-Objective Evolutionary Algorithms, in: Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation, ACM. pp. 1085–1092. doi:10.1145/2739482.2768461.
- Multiobjective design optimization by an evolutionary algorithm. Eng. Optimiz. 33, 399–424. doi:10.1080/03052150108940926.
- Development of optimization methods to deal with current challenges in engineering design optimization. AI Communications 29, 219–221. doi:10.3233/AIC-140645.
- Metaheuristics: From Design to Implementation. John Wiley & Sons, Inc.. chapter Metaheuristics for Multiobjective Optimization. pp. 308–384. doi:10.1002/9780470496916.ch4.
- JCLEC: a Java framework for evolutionary computation. Soft Comput. 12, 381–392. doi:10.1007/s00500-007-0172-0.
- Architecture and Design of the HeuristicLab Optimization Environment, in: Advanced Methods and Applications in Computational Intelligence. Springer. volume 6 of Topics in Intelligent Engineering and Informatics, pp. 197–261. doi:10.1007/978-3-319-01436-4_10.
- Pareto-, Aggregation-, and Indicator-Based Methods in Many-Objective Optimization, in: Evolutionary Multi-Criterion Optimization. Springer. volume 4403 of Lecture Notes in Computer Science, pp. 742–756. doi:10.1007/978-3-540-70928-2_56.
- Visualizing Mutually Nondominating Solution Sets in Many-Objective Optimization. IEEE T. Evol. Comput. 17, 165–184. doi:10.1109/TEVC.2012.2225064.
- Software review: the ECJ toolkit. Genet. Program. Evol. M. 13, 65–67. doi:10.1007/s10710-011-9148-z.
- Designing airfoils using a reference point based evolutionary many-objective particle swarm optimization algorithm, in: Proceedings of the 2010 IEEE Congress on Evolutionary Computation, pp. 1–8. doi:10.1109/CEC.2010.5586221.
- Structural design using multi-objective metaheuristics. Comparative study and application to a real-world problem. Struct. Multidiscipl. Optim. 53, 545–566. doi:10.1007/s00158-015-1291-3.
- A survey of multi-objective metaheuristics applied to structural optimization. Struct. Multidiscipl. Optim. 49, 537–558. doi:10.1007/s00158-013-0996-4.
- Multiobjective evolutionary algorithms: A survey of the state of the art. Swarm Evol. Comput. 1, 32–49. doi:10.1016/j.swevo.2011.03.001.