Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the singular abelian rank of ultraproduct II$_1$ factors (2402.18559v1)

Published 28 Feb 2024 in math.OA

Abstract: We prove that, under the continuum hypothesis $\frak c=\aleph_1$, any ultraproduct II$1$ factor $M= \prod{\omega} M_n$ of separable finite factors $M_n$ contains more than $\frak c$ many mutually disjoint singular MASAs, in other words the {\it singular abelian rank of} $M$, $\text{\rm r}(M)$, is larger than $ \frak c$. Moreover, if the strong continuum hypothesis $2{\frak c}=\aleph_2$ is assumed, then ${\text{\rm r}}(M) = 2{\frak c}$. More generally, these results hold true for any II$_1$ factor $M$ with unitary group of cardinality $\frak c$ that satisfies the bicommutant condition $(A_0'\cap M)'\cap M=M$, for all $A_0\subset M$ separable abelian.

Summary

We haven't generated a summary for this paper yet.