Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unifying F1TENTH Autonomous Racing: Survey, Methods and Benchmarks (2402.18558v2)

Published 28 Feb 2024 in cs.RO

Abstract: The F1TENTH autonomous driving platform, consisting of 1:10-scale remote-controlled cars, has evolved into a well-established education and research platform. The many publications and real-world competitions span many domains, from classical path planning to novel learning-based algorithms. Consequently, the field is wide and disjointed, hindering direct comparison of developed methods and making it difficult to assess the state-of-the-art. Therefore, we aim to unify the field by surveying current approaches, describing common methods, and providing benchmark results to facilitate clear comparisons and establish a baseline for future work. This research aims to survey past and current work with F1TENTH vehicles in the classical and learning categories and explain the different solution approaches. We describe particle filter localisation, trajectory optimisation and tracking, model predictive contouring control, follow-the-gap, and end-to-end reinforcement learning. We provide an open-source evaluation of benchmark methods and investigate overlooked factors of control frequency and localisation accuracy for classical methods as well as reward signal and training map for learning methods. The evaluation shows that the optimisation and tracking method achieves the fastest lap times, followed by the online planning approach. Finally, our work identifies and outlines the relevant research aspects to help motivate future work in the F1TENTH domain.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (53)
  1. M. O’Kelly, V. Sukhil, H. Abbas, J. Harkins, C. Kao, Y. V. Pant, R. Mangharam, D. Agarwal, M. Behl, P. Burgio et al., “F1/10: An open-source autonomous cyber-physical platform,” arXiv preprint arXiv:1901.08567, 2019.
  2. J. Betz, H. Zheng, A. Liniger, U. Rosolia, P. Karle, M. Behl, V. Krovi, and R. Mangharam, “Autonomous vehicles on the edge: A survey on autonomous vehicle racing,” IEEE Open Journal of Intelligent Transportation Systems, 2022.
  3. J. Betz, T. Betz, F. Fent, M. Geisslinger, A. Heilmeier, L. Hermansdorfer, T. Herrmann, S. Huch, P. Karle, M. Lienkamp et al., “Tum autonomous motorsport: An autonomous racing software for the indy autonomous challenge,” Journal of Field Robotics, vol. 40, no. 4, pp. 783–809, 2023.
  4. A. Liniger, A. Domahidi, and M. Morari, “Optimization-based autonomous racing of 1:43 scale RC cars,” Optimal Control Applications and Methods, vol. 36, no. 5, pp. 628–647, 9 2015.
  5. M. O’Kelly, H. Zheng, D. Karthik, and R. Mangharam, “F1tenth: An open-source evaluation environment for continuous control and reinforcement learning,” Proceedings of Machine Learning Research, vol. 123, 2020.
  6. J. Betz, H. Zheng, Z. Zang, F. Sauerbeck, K. Walas, V. Dimitrov, M. Behl, R. Zheng, J. Biswas, V. Krovi et al., “Teaching autonomous systems hands-on: Leveraging modular small-scale hardware in the robotics classroom,” arXiv preprint arXiv:2209.11181, 2022.
  7. B. D. Evans, H. W. Jordaan, and H. A. Engelbrecht, “Comparing deep reinforcement learning architectures for autonomous racing,” Machine Learning with Applications, vol. 14, p. 100496, 2023.
  8. N. Gupta, K. Wilson, and Z. Guo, “Optimizing real-time performances for timed-loop racing under f1tenth,” arXiv preprint arXiv:2212.04549, 2022.
  9. C. H. Walsh and S. Karaman, “Cddt: Fast approximate 2d ray casting for accelerated localization,” in 2018 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2018, pp. 3677–3684.
  10. M. O’Kelly, H. Zheng, A. Jain, J. Auckley, K. Luong, and R. Mangharam, “Tunercar: A superoptimization toolchain for autonomous racing,” in 2020 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2020, pp. 5356–5362.
  11. V. Sukhil and M. Behl, “Adaptive lookahead pure-pursuit for autonomous racing,” arXiv preprint arXiv:2111.08873, 2021.
  12. T. Y. Lim, E. Ghignone, N. Baumann, and M. Magno, “Robustness evaluation of localization techniques for autonomous racing,” 2024.
  13. Z. Zang, H. Zheng, J. Betz, and R. Mangharam, “Local_inn: Implicit map representation and localization with invertible neural networks,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 11 742–11 748.
  14. A. Heilmeier, A. Wischnewski, L. Hermansdorfer, J. Betz, M. Lienkamp, and B. Lohmann, “Minimum curvature trajectory planning and control for an autonomous race car,” Vehicle System Dynamics, vol. 58, no. 10, pp. 1497–1527, 10 2020.
  15. J. Klapálek, A. Novák, M. Sojka, and Z. Hanzálek, “Car racing line optimization with genetic algorithm using approximate homeomorphism,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2021, pp. 601–607.
  16. H. Zheng, J. Betz, and R. Mangharam, “Gradient-free multi-domain optimization for autonomous systems,” arXiv preprint arXiv:2202.13525, 2022.
  17. J. Klapálek, M. Sojka, and Z. Hanzálek, “Comparison of control approaches for autonomous race car model,” in Proceedings of the FISITA 2021 World Congress.   FISITA-International Federation of Automotive Engineering Societies, 2021.
  18. J. Becker, N. Imholz, L. Schwarzenbach, E. Ghignone, N. Baumann, and M. Magno, “Model-and acceleration-based pursuit controller for high-performance autonomous racing,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 5276–5283.
  19. F. Curinga, “Autonomous racing using model predictive control,” Master’s thesis, KTH, School of Electrical Engineering and Computer Science (EECS), 2017.
  20. J. Bhargav, J. Betz, H. Zheng, and R. Mangharam, “Track based offline policy learning for overtaking maneuvers with autonomous racecars,” arXiv preprint arXiv:2107.09782, 2021.
  21. N. Li, E. Goubault, L. Pautet, and S. Putot, “A real-time nmpc controller for autonomous vehicle racing,” in 2022 6th International Conference on Automation, Control and Robots (ICACR).   IEEE, 2022, pp. 148–155.
  22. E. Ghignone, N. Baumann, and M. Magno, “Tc-driver: A trajectory conditioned reinforcement learning approach to zero-shot autonomous racing,” Field Robotics, vol. 3, no. 1, pp. 637–651, 2023.
  23. R. C. Coulter, “Implementation of the pure pursuit path tracking algorithm,” Carnegie-Mellon UNIV Pittsburgh PA Robotics INST, Tech. Rep., 1992.
  24. T. Nagy, A. Amine, T. X. Nghiem, U. Rosolia, Z. Zang, and R. Mangharam, “Ensemble gaussian processes for adaptive autonomous driving on multi-friction surfaces,” arXiv preprint arXiv:2303.13694, 2023.
  25. V. Cataffo, G. Silano, L. Iannelli, V. Puig, and L. Glielmo, “A nonlinear model predictive control strategy for autonomous racing of scale vehicles,” in 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC).   IEEE, 2022, pp. 100–105.
  26. R. Wang, Y. Han, and U. Vaidya, “Deep koopman data-driven control framework for autonomous racing,” in Proc. Int. Conf. Robot. Autom.(ICRA) Workshop Opportunities Challenges Auton. Racing, 2021, pp. 1–6.
  27. A. Jain, M. O’Kelly, P. Chaudhari, and M. Morari, “Bayesrace: Learning to race autonomously using prior experience,” in Conference on Robot Learning.   PMLR, 2021, pp. 1918–1929.
  28. T. Dwivedi, T. Betz, F. Sauerbeck, P. Manivannan, and M. Lienkamp, “Continuous control of autonomous vehicles using plan-assisted deep reinforcement learning,” in 2022 22nd International Conference on Control, Automation and Systems (ICCAS).   IEEE, 2022, pp. 244–250.
  29. V. Sezer and M. Gokasan, “A novel obstacle avoidance algorithm:“follow the gap method”,” Robotics and Autonomous Systems, vol. 60, no. 9, pp. 1123–1134, 2012.
  30. N. Otterness, “The ”Disparity Extender” Algorithm, and F1/Tenth.” [Online]. Available: https://www.nathanotterness.com/2019/04/the-disparity-extender-algorithm-and.html
  31. N. Hamilton, P. Musau, D. M. Lopez, and T. T. Johnson, “Zero-shot policy transfer in autonomous racing: Reinforcement learning vs imitation learning,” in 2022 IEEE International Conference on Assured Autonomy (ICAA).   IEEE, 2022, pp. 11–20.
  32. A. Brunnbauer, L. Berducci, A. Brandstatter, M. Lechner, R. Hasani, D. Rus, and R. Grosu, “Latent Imagination Facilitates Zero-Shot Transfer in Autonomous Racing,” 2022 International Conference on Robotics and Automation (ICRA), pp. 7513–7520, 5 2022.
  33. M. Bosello, R. Tse, and G. Pau, “Train in austria, race in montecarlo: Generalized rl for cross-track f1 tenth lidar-based races,” in 2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC).   IEEE, 2022, pp. 290–298.
  34. X. Sun, M. Zhou, Z. Zhuang, S. Yang, J. Betz, and R. Mangharam, “A benchmark comparison of imitation learning-based control policies for autonomous racing,” in 2023 IEEE Intelligent Vehicles Symposium (IV).   IEEE, 2023, pp. 1–5.
  35. X. Sun, S. Yang, and R. Mangharam, “Mega-dagger: Imitation learning with multiple imperfect experts,” arXiv preprint arXiv:2303.00638, 2023.
  36. B. D. Evans, H. A. Engelbrecht, and H. W. Jordaan, “High-speed autonomous racing using trajectory-aided deep reinforcement learning,” IEEE Robotics and Automation Letters, vol. 8, no. 9, pp. 5353–5359, 2023.
  37. A. Tătulea-Codrean, T. Mariani, and S. Engell, “Design and simulation of a machine-learning and model predictive control approach to autonomous race driving for the f1/10 platform,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 6031–6036, 2020.
  38. R. Trumpp, D. Hoornaert, and M. Caccamo, “Residual policy learning for vehicle control of autonomous racing cars,” in 2023 IEEE Intelligent Vehicles Symposium (IV), 2023, pp. 1–6.
  39. B. Evans, H. A. Engelbrecht, and H. W. Jordaan, “Learning the subsystem of local planning for autonomous racing,” in 2021 20th International Conference on Advanced Robotics (ICAR).   IEEE, 2021, pp. 601–606.
  40. ——, “Reward signal design for autonomous racing,” in 2021 20th International Conference on Advanced Robotics (ICAR).   IEEE, 2021, pp. 455–460.
  41. R. Zhang, J. Hou, G. Chen, Z. Li, J. Chen, and A. Knoll, “Residual policy learning facilitates efficient model-free autonomous racing,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 11 625–11 632, 2022.
  42. R. Trumpp, E. Javanmardi, J. Nakazato, M. Tsukada, and M. Caccamo, “RaceMOP: Mapless online path planning for multi-agent autonomous racing using residual policy learning,” Under submission, 2024.
  43. R. Ivanov, T. J. Carpenter, J. Weimer, R. Alur, G. J. Pappas, and I. Lee, “Case study: verifying the safety of an autonomous racing car with a neural network controller,” in Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control, 2020, pp. 1–7.
  44. P. Musau, N. Hamilton, D. M. Lopez, P. Robinette, and T. T. Johnson, “On using real-time reachability for the safety assurance of machine learning controllers,” in 2022 IEEE International Conference on Assured Autonomy (ICAA).   IEEE, 2022, pp. 1–10.
  45. B. D. Evans, H. W. Jordaan, and H. A. Engelbrecht, “Safe reinforcement learning for high-speed autonomous racing,” Cognitive Robotics, vol. 3, pp. 107–126, 2023.
  46. B. D. Evans, J. Betz, H. Zheng, H. A. Engelbrecht, R. Mangharam, and H. W. Jordaan, “Bypassing the simulation-to-reality gap: Online reinforcement learning using a supervisor,” in 2023 21st International Conference on Advanced Robotics (ICAR).   IEEE, 2023, pp. 325–331.
  47. M. Luiza Costa Vianna, E. Goubault, and S. Putot, “Neural Network Based Model Predictive Control for an Autonomous Vehicle,” arXiv e-prints, p. arXiv:2107.14573, Jul. 2021.
  48. J. Zhang and H.-W. Loidl, “F1tenth: An over-taking algorithm using machine learning,” in 2023 28th International Conference on Automation and Computing (ICAC).   IEEE, 2023, pp. 01–06.
  49. V. S. Babu and M. Behl, “F1tenth.dev-An Open-source ROS based F1/10 Autonomous Racing Simulator,” in IEEE International Conference on Automation Science and Engineering, vol. 2020-Augus.   IEEE Computer Society, 8 2020, pp. 1614–1620.
  50. S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approximation error in actor-critic methods,” in International conference on machine learning.   PMLR, 2018, pp. 1587–1596.
  51. M. Althoff, M. Koschi, and S. Manzinger, “Commonroad: Composable benchmarks for motion planning on roads,” in 2017 IEEE Intelligent Vehicles Symposium (IV).   IEEE, 2017, pp. 719–726.
  52. P. Cai, H. Wang, H. Huang, Y. Liu, and M. Liu, “Vision-based autonomous car racing using deep imitative reinforcement learning,” IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 7262–7269, 2021.
  53. P. R. Wurman, S. Barrett, K. Kawamoto, J. MacGlashan, K. Subramanian, T. J. Walsh, R. Capobianco, A. Devlic, F. Eckert, F. Fuchs, L. Gilpin, P. Khandelwal, V. Kompella, H. C. Lin, P. MacAlpine, D. Oller, T. Seno, C. Sherstan, M. D. Thomure, H. Aghabozorgi, L. Barrett, R. Douglas, D. Whitehead, P. Dürr, P. Stone, M. Spranger, and H. Kitano, “Outracing champion Gran Turismo drivers with deep reinforcement learning,” Nature 2022 602:7896, vol. 602, no. 7896, pp. 223–228, 2 2022.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Benjamin David Evans (4 papers)
  2. Raphael Trumpp (8 papers)
  3. Marco Caccamo (49 papers)
  4. Hendrik Willem Jordaan (5 papers)
  5. Herman Arnold Engelbrecht (3 papers)
  6. Felix Jahncke (4 papers)
  7. Johannes Betz (63 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com