Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neuromorphic Event-Driven Semantic Communication in Microgrids (2402.18390v1)

Published 28 Feb 2024 in cs.ET, cs.AI, cs.NE, cs.SY, and eess.SY

Abstract: Synergies between advanced communications, computing and artificial intelligence are unraveling new directions of coordinated operation and resiliency in microgrids. On one hand, coordination among sources is facilitated by distributed, privacy-minded processing at multiple locations, whereas on the other hand, it also creates exogenous data arrival paths for adversaries that can lead to cyber-physical attacks amongst other reliability issues in the communication layer. This long-standing problem necessitates new intrinsic ways of exchanging information between converters through power lines to optimize the system's control performance. Going beyond the existing power and data co-transfer technologies that are limited by efficiency and scalability concerns, this paper proposes neuromorphic learning to implant communicative features using spiking neural networks (SNNs) at each node, which is trained collaboratively in an online manner simply using the power exchanges between the nodes. As opposed to the conventional neuromorphic sensors that operate with spiking signals, we employ an event-driven selective process to collect sparse data for training of SNNs. Finally, its multi-fold effectiveness and reliable performance is validated under simulation conditions with different microgrid topologies and components to establish a new direction in the sense-actuate-compute cycle for power electronic dominated grids and microgrids.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. S. Sahoo and S. Mishra, “A Distributed Finite-Time Secondary Average Voltage Regulation and Current Sharing Controller for DC Microgrids,” IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 282–292, Jan. 2019.
  2. J. M. Guerrero, M. Chandorkar, T.-L. Lee, and P. C. Loh, “Advanced Control Architectures for Intelligent Microgrids—Part I: Decentralized and Hierarchical Control,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1254–1262, Apr. 2013.
  3. S. Sahoo and S. Mishra, “An Adaptive Event-Triggered Communication-based Distributed Secondary Control for DC Microgrids,” IEEE Trans. Smart Grid, vol. 9, no. 6, pp. 6674–6683, Nov. 2018.
  4. E. Espina, R. Cárdenas-Dobson, J. W. Simpson-Porco, D. Sáez, and M. Kazerani, “A Consensus-Based Secondary Control Strategy for Hybrid AC/DC Microgrids with Experimental Validation,” IEEE Trans. Power Electron., vol. 36, no. 5, pp. 5971–5984, May. 2021.
  5. E. Espina, R. Cárdenas-Dobson, J. W. Simpson-Porco, M. Kazerani, and D. Sáez, “A Consensus-Based Distributed Secondary Control Optimization Strategy for Hybrid Microgrids,” IEEE Trans. Smart Grid, vol. 14, no. 6, pp. 4242–4255, Nov. 2023.
  6. S. Sahoo and F. Blaabjerg, “A model-free predictive controller for networked microgrids with random communication delays,” in 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), 2021, pp. 2667–2672.
  7. M. Dong, L. Li, Y. Nie, D. Song, and J. Yang, “Stability Analysis of a Novel Distributed Secondary Control Considering Communication Delay in DC Microgrids,” IEEE Trans. Smart Grid, vol. 10, no. 6, pp. 6690–6700, Nov. 2019.
  8. S. Sahoo, S. Mishra, J. C.-H. Peng, and T. Dragičević, “A Stealth Cyber-Attack Detection Strategy for DC Microgrids,” IEEE Trans. Power Electron., vol. 34, no. 8, pp. 8162–8174, Aug. 2019.
  9. X. Wu, S. Deng, W. Yuan, and S. Mei, “A Robust Distributed Secondary Control of Microgrids Considering Communication Failures,” in Proc. 2022 ICPET, Beijing, China, Jul. 2022, pp. 395–400.
  10. M. Angjelichinoski, Č. Stefanović, P. Popovski, H. Liu, P. C. Loh, and F. Blaabjerg, “Multiuser Communication Through Power Talk in DC Microgrids,” IEEE J. Sel. Areas Commun., vol. 34, no. 7, pp. 2006–2021, Jul. 2016.
  11. X. He, R. Wang, J. Wu, and W. Li, “Nature of Power Electronics and Integration of Power Conversion with Communication for Talkative Power,” Nat. Commun., vol. 11, no. 1, p. 2479, May. 2020.
  12. Y. Zhu, J. Wu, R. Wang, Z. Lin, and X. He, “Embedding Power Line Communication in Photovoltaic Optimizer by Modulating Data in Power Control Loop,” IEEE Trans. Ind. Electron., vol. 66, no. 5, pp. 3948–3958, May. 2019.
  13. J. Chen, K. Liu, J. Wu, R. Wang, W. Weng, and X. He, “Simultaneous Power and Data Transmission Using Combined Three Degrees of Freedom Modulation Strategy in DC-DC Converters,” IEEE Trans. Power Electron., vol. 38, no. 3, pp. 3191–3200, Mar. 2022.
  14. P. A. Hoeher, J. M. Placzek, M. Hott, and M. Liserre, “Networking Aspects based on the Talkative Power Concept for DC Microgrid Systems,” in Proc. 2022 IEEE PEDG, Kiel, Germany, Jun. 2022, pp. 1–6.
  15. Y. Leng, D. Yu, K. Han, S. S. Yu, and Y. Hu, “OFDM-based Intrinsically Safe Power and Signal Synchronous Transmission for CC-PT-Controlled Buck Converters,” IEEE Trans. Power Electron., vol. 37, no. 9, pp. 10 319–10 331, Sep, 2022.
  16. D. Gündüz, Z. Qin, I. E. Aguerri, H. S. Dhillon, Z. Yang, A. Yener, K. K. Wong, and C.-B. Chae, “Beyond Transmitting Bits: Context, Semantics, and Task-oriented Communications,” IEEE J. Sel. Areas Commun., vol. 41, no. 1, pp. 5–41, Jan. 2023.
  17. Z. Ma, Z. Wang, Y. Guo, Y. Yuan, and H. Chen, “Nonlinear Multiple Models Adaptive Secondary Voltage Control of Microgrids,” IEEE Trans. Smart Grid, vol. 12, no. 1, pp. 227–238, Jan. 2021.
  18. H. Jang, O. Simeone, B. Gardner, and A. Gruning, “An Introduction to Probabilistic Spiking Neural Networks: Probabilistic Models, Learning Rules, and Applications,” IEEE Signal Process. Mag., vol. 36, no. 6, pp. 64–77, Nov. 2019.
  19. K. Roy, A. Jaiswal, and P. Panda, “Towards Spike-based Machine Intelligence with Neuromorphic Computing,” Nature, vol. 575, no. 7784, pp. 607–617, Nov. 2019.
  20. L. Deng, Y. Wu, X. Hu, L. Liang, Y. Ding, G. Li, G. Zhao, P. Li, and Y. Xie, “Rethinking the Performance Comparison Between SNNS and ANNS,” Neural Networks, vol. 121, pp. 294–307, Jan. 2020.
  21. S. Nitzsche, B. Pachideh, M. Neher, M. Kreutzer, N. Link, L. Theurer, and J. Becker, “Comparison of Artificial and Spiking Neural Networks for Ambient-Assisted Living,” in Proc. 2022 IEEE SSI, Grenoble, France, Apr. 2022, pp. 1–6.
  22. R. Vaila, J. Chiasson, and V. Saxena, “A Deep Unsupervised Feature Learning Spiking Neural Network with Binarized Classification Layers for the EMNIST Classification,” IEEE Trans. Emerging Topics Comput. Intell., vol. 6, no. 1, pp. 124–135, Feb. 2022.
  23. J. Chen, N. Skatchkovsky, and O. Simeone, “Neuromorphic Wireless Cognition: Event-driven Semantic Communications for Remote Inference,” IEEE Trans. Cogn. Commun., Jan. 2023.
  24. K. Gupta, S. Sahoo, and B. K. Panigrahi, “Delay-aware semantic sampling in power electronic systems,” IEEE Transactions on Smart Grid, 2023, early access.
  25. K. Gupta, S. Sahoo, and B. K. Panigrahi, “A monolithic cybersecurity architecture for power electronic systems,” IEEE Transactions on Smart Grid, 2024, early access.
  26. A. Bidram, A. Davoudi, F. L. Lewis, and J. M. Guerrero, “Distributed Cooperative Secondary Control of Microgrids Using Feedback Linearization,” IEEE Trans. Power Syst., vol. 28, no. 3, pp. 3462–3470, Aug. 2013.
  27. S. Rath, L. D. Nguyen, S. Sahoo, and P. Popovski, “Self-Healing Secure Blockchain Framework in Microgrids,” IEEE Trans. Smart Grid, vol. 14, no. 6, pp. 4729–4740, 2023.
  28. M. Rozenberg, O. Schneegans, and P. Stoliar, “An ultra-compact leaky-integrate-and-fire model for building spiking neural networks,” Scientific reports, vol. 9, no. 1, p. 11123, 2019.
  29. L. Ding, Q.-L. Han, X. Ge, and X.-M. Zhang, “An Overview of Recent Advances in Event-Triggered Consensus of Multiagent Systems,” IEEE Trans. Cybern., vol. 48, no. 4, pp. 1110–1123, 2018.
  30. S. Sahoo, Y. Yang, and F. Blaabjerg, “Resilient synchronization strategy for ac microgrids under cyber attacks,” IEEE Transactions on Power Electronics, vol. 36, no. 1, pp. 73–77, 2021.
  31. V. Saranirad, S. Dora, T. M. McGinnity, and D. Coyle, “Assembly-based stdp: A new learning rule for spiking neural networks inspired by biological assemblies,” in 2022 International Joint Conference on Neural Networks (IJCNN).   IEEE, 2022, pp. 1–7.
  32. A. Payeur, J. Guerguiev, F. Zenke, B. A. Richards, and R. Naud, “Burst-dependent synaptic plasticity can coordinate learning in hierarchical circuits,” Nature neuroscience, vol. 24, no. 7, pp. 1010–1019, 2021.
  33. M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training deep neural networks with binary weights during propagations,” in Advances in Neural Information Processing Systems, C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, Eds., vol. 28.   Curran Associates, Inc., 2015.
  34. E. Lemaire, L. Cordone, A. Castagnetti, P.-E. Novac, J. Courtois, and B. Miramond, “An Analytical Estimation of Spiking Neural Networks Energy Efficiency,” in Proc. International Conference on Neural Information Processing.   Springer, 2022, pp. 574–587.
  35. N. P. Jouppi and et. al., “Ten Lessons From Three Generations Shaped Google’s TPUv4i : Industrial Product,” in Proc. 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA), 2021, pp. 1–14.
Citations (5)

Summary

We haven't generated a summary for this paper yet.