Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Precoding for Multi-Cell ISAC: from Coordinated Beamforming to Coordinated Multipoint and Bi-Static Sensing (2402.18387v1)

Published 28 Feb 2024 in cs.IT, eess.SP, and math.IT

Abstract: This paper proposes a framework for designing robust precoders for a multi-input single-output (MISO) system that performs integrated sensing and communication (ISAC) across multiple cells and users. We use Cramer-Rao-Bound (CRB) to measure the sensing performance and derive its expressions for two multi-cell scenarios, namely coordinated beamforming (CBF) and coordinated multi-point (CoMP). In the CBF scheme, a BS shares channel state information (CSI) and estimates target parameters using monostatic sensing. In contrast, a BS in the CoMP scheme shares the CSI and data, allowing bistatic sensing through inter-cell reflection. We consider both block-level (BL) and symbol-level (SL) precoding schemes for both the multi-cell scenarios that are robust to channel state estimation errors. The formulated optimization problems to minimize the CRB in estimating the parameters of a target and maximize the minimum communication signal-to-interference-plus-noise-ratio (SINR) while satisfying a given total transmit power budget are non-convex. We tackle the non-convexity using a combination of semidefinite relaxation (SDR) and alternating optimization (AO) techniques. Simulations suggest that neglecting the inter-cell reflection and communication links degrades the performance of an ISAC system. The CoMP scenario employing SL precoding performs the best, whereas the BL precoding applied in the CBF scenario produces relatively high estimation error for a given minimum SINR value.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. F. Liu, C. Masouros, A. P. Petropulu, H. Griffiths, and L. Hanzo, “Joint Radar and Communication Design: Applications, State-of-the-Art, and the Road Ahead,” IEEE Trans. on Commun., vol. 68, no. 6, pp. 3834–3862, 2020.
  2. F. Liu, Y. Cui, C. Masouros, J. Xu, T. X. Han, Y. C. Eldar, and S. Buzzi, “Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond,” IEEE journal on selected areas in communications, vol. 40, no. 6, pp. 1728–1767, 2022.
  3. W. Chen, X. Lin, J. Lee, A. Toskala, S. Sun, C. F. Chiasserini, and L. Liu, “5g-advanced toward 6g: Past, present, and future,” IEEE Journal on Selected Areas in Communications, vol. 41, no. 6, pp. 1592–1619, 2023.
  4. I. T. Union, “Future Technology Trends of Terrestrial International Mobile Telecommunications Systems Towards 2030 and Beyond,” 2022.
  5. A. Kaushik, R. Singh, S. Dayarathna, R. Senanayake, M. Di Renzo, M. Dajer, H. Ji, Y. Kim, V. Sciancalepore, A. Zappone et al., “Towards Integrated Sensing and Communications for 6G: A Standardization Perspective,” arXiv preprint arXiv:2308.01227, 2023.
  6. K. Meng, Q. Wu, S. Ma, W. Chen, K. Wang, and J. Li, “Throughput Maximization for UAV-Enabled Integrated Periodic Sensing and Communication,” IEEE Trans. on Wireless Commun., vol. 22, no. 1, pp. 671–687, 2023.
  7. F. Liu, L. Zhou, C. Masouros, A. Li, W. Luo, and A. Petropulu, “Toward Dual-Functional Radar-Communication Systems: Optimal Waveform Design,” IEEE Trans. on Signal Processing, vol. 66, no. 16, pp. 4264–4279, 2018.
  8. C. Sturm and W. Wiesbeck, “Waveform Design and Signal Processing Aspects for Fusion of Wireless Communications and Radar Sensing,” Proceedings of the IEEE, vol. 99, no. 7, pp. 1236–1259, 2011.
  9. D. Ma, N. Shlezinger, T. Huang, Y. Shavit, M. Namer, Y. Liu, and Y. C. Eldar, “A hardware prototype for joint radar-communication system using spatial modulation,” in 2021 55th Asilomar Conference on Signals, Systems, and Computers, 2021, pp. 634–639.
  10. M. Temiz, C. Horne, N. J. Peters, M. A. Ritchie, and C. Masouros, “An Experimental Study of Radar-Centric Transmission for Integrated Sensing and Communications,” IEEE Trans. on Microwave Theory and Techniques, 2023.
  11. F. Liu, Y.-F. Liu, A. Li, C. Masouros, and Y. C. Eldar, “Cramér-Rao Bound Optimization for Joint Radar-Communication Beamforming,” IEEE Transactions on Signal Processing, vol. 70, pp. 240–253, 2021.
  12. X. Liu, T. Huang, N. Shlezinger, Y. Liu, J. Zhou, and Y. C. Eldar, “Joint Transmit Beamforming for Multiuser MIMO Communications and MIMO Radar,” IEEE Trans. on Signal Processing, vol. 68, pp. 3929–3944, 2020.
  13. X. Yuan, Z. Feng, J. A. Zhang, W. Ni, R. P. Liu, Z. Wei, and C. Xu, “Spatio-Temporal Power Optimization for MIMO Joint Communication and Radio Sensing Systems With Training Overhead,” IEEE Transactions on Vehicular Technology, vol. 70, no. 1, pp. 514–528, 2021.
  14. B. Li and A. P. Petropulu, “Joint Transmit Designs for Coexistence of MIMO Wireless Communications and Sparse Sensing Radars in Clutter,” IEEE Trans. on Aerospace and Electronic Systems, vol. 53, no. 6, pp. 2846–2864, 2017.
  15. M. Temiz, E. Alsusa, and M. W. Baidas, “Optimized Precoders for Massive MIMO OFDM Dual Radar-Communication Systems,” IEEE Trans. on Commun., vol. 69, no. 7, pp. 4781–4794, 2021.
  16. T. Xu, F. Liu, C. Masouros, and I. Darwazeh, “Proof of Concept experiments of Joint Waveform Design for Integrated Sensing and Communications,” in Proceedings of the 1st ACM MobiCom Workshop on Integrated Sensing and Communications Systems, 2022, pp. 25–30.
  17. C. D. Ozkaptan, H. Zhu, E. Ekici, and O. Altintas, “Software-Defined MIMO OFDM Joint Radar-Communication Platform with Fully Digital mmWave Architecture,” in 2023 IEEE 3rd International Symposium on Joint Communications & Sensing (JC&S).   IEEE, 2023, pp. 1–6.
  18. Z. Liao, F. Liu, A. Li, and C. Masouros, “Faster-Than-Nyquist Symbol-Level Precoding for Wideband Integrated Sensing and Communications,” arXiv preprint arXiv:2306.14509, 2023.
  19. Z. Zhang, Q. Chang, F. Liu, and S. Yang, “Dual-Functional Radar-Communication Waveform Design: Interference Reduction Versus Exploitation,” IEEE Commun. Lett., vol. 26, no. 1, pp. 148–152, 2022.
  20. M. Wang and H. Du, “Symbol-Level Precoding Design for Integrated Sensing and Communication,” in 2022 IEEE 8th International Conference on Computer and Communications (ICCC), 2022, pp. 967–971.
  21. E. Björnson, E. Jorswieck et al., “Optimal resource allocation in coordinated multi-cell systems,” Foundations and Trends® in Communications and Information Theory, vol. 9, no. 2–3, pp. 113–381, 2013.
  22. C. Masouros and G. Zheng, “Exploiting Known Interference as Green Signal Power for Downlink Beamforming Optimization,” IEEE Trans. on Signal processing, vol. 63, no. 14, pp. 3628–3640, 2015.
  23. A. Li, D. Spano, J. Krivochiza, S. Domouchtsidis, C. G. Tsinos, C. Masouros, S. Chatzinotas, Y. Li, B. Vucetic, and B. Ottersten, “A Tutorial on Interference Exploitation via Symbol-Level Precoding: Overview, State-of-the-Art and Future Directions,” IEEE Commun. Surveys & Tutorials, vol. 22, no. 2, pp. 796–839, 2020.
  24. Z. Wei, R. Xu, Z. Feng, H. Wu, N. Zhang, W. Jiang, and X. Yang, “Symbol-level integrated sensing and communication enabled multiple base stations cooperative sensing,” IEEE Transactions on Vehicular Technology, 2023.
  25. X. Wang, H. Wu, Y. Xu, H. Cao, N. Kumar, and J. J. Rodrigues, “Resource Allocation in Multi-Cell Integrated Sensing and Communication Systems: A DRL Approach,” in ICC 2023-IEEE International Conference on Communications.   IEEE, 2023, pp. 3210–3215.
  26. R. Li, Z. Xiao, and Y. Zeng, “Beamforming Towards Seamless Sensing Coverage for Cellular Integrated Sensing and Communication,” in 2022 IEEE International Conference on Communications Workshops (ICC Workshops).   IEEE, 2022, pp. 492–497.
  27. Y. Xu, L. Xie, D. Xu, and S. Song, “Fundamental Limits and Base Station Selection for Collaborative Sensing in Perceptive Mobile Networks,” in 2023 IEEE International Mediterranean Conference on Communications and Networking (MeditCom).   IEEE, 2023, pp. 97–102.
  28. D. Xu, A. Khalili, X. Yu, D. W. K. Ng, and R. Schober, “Integrated Sensing and Communication in Distributed Antenna Networks,” arXiv preprint arXiv:2210.14880, 2022.
  29. D. Xu, C. Liu, S. Song, and D. W. K. Ng, “Integrated Sensing and Communication in Coordinated Cellular Networks,” arXiv preprint arXiv:2305.01213, 2023.
  30. Y. Xu, D. Xu, L. Xie, and S. Song, “Joint BS Selection, User Association, and Beamforming Design for Network Integrated Sensing and Communication,” arXiv preprint arXiv:2305.05265, 2023.
  31. W. Jiang, Z. Wei, F. Liu, Z. Feng, and P. Zhang, “Collaborative Precoding Design for Adjacent Integrated Sensing and Communication Base Stations,” arXiv preprint arXiv:2310.08246, 2023.
  32. X. Liu, H. Zhang, K. Long, A. Nallanathan, and V. C. Leung, “Distributed Unsupervised Learning for Interference Management in Integrated Sensing and Communication Systems,” IEEE Transa. on Wireless Commun., 2023.
  33. J. Zhang, Z. Fei, X. Wang, P. Liu, J. Huang, and Z. Zheng, “Joint Resource Allocation and User Association for Multi-Cell Integrated Sensing and Communication Systems,” EURASIP Journal on Wireless Communications and Networking, vol. 2023, no. 1, p. 64, 2023.
  34. N. Babu and C. Masouros, “Multi-cell Coordinated Joint Sensing and Communications,” in 2023 Asilomar Conference.   IEEE, 2023.
  35. Z. Wei, C. Masouros, K.-K. Wong, and X. Kang, “Multi-cell interference exploitation: Enhancing the power efficiency in cell coordination,” IEEE Transactions on Wireless Communications, vol. 19, no. 1, pp. 547–562, 2019.
  36. M. Benzaghta, G. Geraci, D. Lopez-Perez, and A. Valcarce, “Designing Cellular Networks for UAV Corridors via Bayesian Optimization,” arXiv preprint arXiv:2308.05052, 2023.
  37. J. Li, L. Xu, P. Stoica, K. W. Forsythe, and D. W. Bliss, “Range Compression and Waveform Optimization for MIMO Radar: A Cramér–Rao Bound Based Study,” IEEE Trans. on Signal Processing, vol. 56, no. 1, pp. 218–232, 2007.
  38. M. Grant and S. Boyd, “CVX: Matlab Software for Disciplined Convex Programming, version 2.1,” 2014.
  39. K. L. Law and C. Masouros, “Symbol Error Rate Minimization Precoding for Interference Exploitation,” IEEE Transactions on Communications, vol. 66, no. 11, pp. 5718–5731, 2018.
  40. J. C. Bezdek and R. J. Hathaway, “Convergence of Alternating Optimization,” Neural, Parallel & Scientific Computations, vol. 11, no. 4, pp. 351–368, 2003.
  41. H. Jiang, T. Kathuria, Y. T. Lee, S. Padmanabhan, and Z. Song, “A Faster Interior Point Method for Semidefinite Programming,” in 2020 IEEE 61st annual symposium on foundations of computer science (FOCS).   IEEE, 2020, pp. 910–918.
  42. A. Li, F. Liu, X. Liao, Y. Shen, and C. Masouros, “Symbol-level precoding made practical for multi-level modulations via block-level rescaling,” in 2021 IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications (SPAWC).   IEEE, 2021, pp. 71–75.
Citations (4)

Summary

We haven't generated a summary for this paper yet.