Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fractional Linear Matroid Matching is in quasi-NC (2402.18276v1)

Published 28 Feb 2024 in cs.CC, cs.DM, and cs.DS

Abstract: The matching and linear matroid intersection problems are solvable in quasi-NC, meaning that there exist deterministic algorithms that run in polylogarithmic time and use quasi-polynomially many parallel processors. However, such a parallel algorithm is unknown for linear matroid matching, which generalizes both of these problems. In this work, we propose a quasi-NC algorithm for fractional linear matroid matching, which is a relaxation of linear matroid matching and commonly generalizes fractional matching and linear matroid intersection. Our algorithm builds upon the connection of fractional matroid matching to non-commutative Edmonds' problem recently revealed by Oki and Soma~(2023). As a corollary, we also solve black-box non-commutative Edmonds' problem with rank-two skew-symmetric coefficients.

Citations (1)

Summary

We haven't generated a summary for this paper yet.