Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Seeker's Dilemma: Realistic Formulation and Benchmarking for Hardware Trojan Detection (2402.17918v1)

Published 27 Feb 2024 in cs.CR, cs.AR, and cs.LG

Abstract: This work focuses on advancing security research in the hardware design space by formally defining the realistic problem of Hardware Trojan (HT) detection. The goal is to model HT detection more closely to the real world, i.e., describing the problem as "The Seeker's Dilemma" (an extension of Hide&Seek on a graph), where a detecting agent is unaware of whether circuits are infected by HTs or not. Using this theoretical problem formulation, we create a benchmark that consists of a mixture of HT-free and HT-infected restructured circuits while preserving their original functionalities. The restructured circuits are randomly infected by HTs, causing a situation where the defender is uncertain if a circuit is infected or not. We believe that our innovative dataset will help the community better judge the detection quality of different methods by comparing their success rates in circuit classification. We use our developed benchmark to evaluate three state-of-the-art HT detection tools to show baseline results for this approach. We use Principal Component Analysis to assess the strength of our benchmark, where we observe that some restructured HT-infected circuits are mapped closely to HT-free circuits, leading to significant label misclassification by detectors.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (50)
  1. S.-Y. Yu, R. Yasaei, Q. Zhou, T. Nguyen, and M. A. Al Faruque, “Hw2vec: A graph learning tool for automating hardware security,” in 2021 IEEE International Symposium on Hardware Oriented Security and Trust (HOST).   IEEE, 2021, pp. 13–23.
  2. B. Shakya, T. He, H. Salmani, D. Forte, S. Bhunia, and M. Tehranipoor, “Benchmarking of hardware trojans and maliciously affected circuits,” Journal of Hardware and Systems Security, vol. 1, no. 1, pp. 85–102, 2017.
  3. A. Jain, Z. Zhou, and U. Guin, “Survey of recent developments for hardware trojan detection,” in 2021 IEEE International Symposium on Circuits and Systems (ISCAS).   IEEE, 2021, pp. 1–5.
  4. R. S. Chakraborty, F. Wolff, S. Paul, C. Papachristou, and S. Bhunia, “Mero: A statistical approach for hardware trojan detection,” in International Workshop on Cryptographic Hardware and Embedded Systems.   Springer, 2009, pp. 396–410.
  5. K. Hasegawa, M. Yanagisawa, and N. Togawa, “Trojan-feature extraction at gate-level netlists and its application to hardware-trojan detection using random forest classifier,” in 2017 IEEE International Symposium on Circuits and Systems (ISCAS).   IEEE, 2017, pp. 1–4.
  6. Z. Pan and P. Mishra, “Automated test generation for hardware trojan detection using reinforcement learning,” in Proceedings of the 26th Asia and South Pacific Design Automation Conference, 2021, pp. 408–413.
  7. V. Gohil, S. Patnaik, H. Guo, D. Kalathil, and J. Rajendran, “Deterrent: detecting trojans using reinforcement learning,” in Proceedings of the 59th ACM/IEEE Design Automation Conference, 2022, pp. 697–702.
  8. A. Sarihi, P. Jamieson, A. Patooghy, and A.-H. A. Badawy, “Multi-criteria hardware trojan detection: A reinforcement learning approach,” in 2023 IEEE 66th International Midwest Symposium on Circuits and Systems (MWSCAS), 2023, pp. 1093–1097.
  9. “Trust-Hub,” https://trust-hub.org/#/home, accessed: 2022-12-19.
  10. J. Cruz, Y. Huang, P. Mishra, and S. Bhunia, “An automated configurable trojan insertion framework for dynamic trust benchmarks,” in 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE).   IEEE, 2018, pp. 1598–1603.
  11. V. Gohil, H. Guo, S. Patnaik, and J. Rajendran, “Attrition: Attacking static hardware trojan detection techniques using reinforcement learning,” in Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security, 2022, pp. 1275–1289.
  12. A. Sarihi, A. Patooghy, P. Jamieson, and A.-H. A. Badawy, “Trojan playground: A reinforcement learning framework for hardware trojan insertion and detection,” arXiv preprint arXiv:2305.09592, 2023.
  13. “Seeker’s dilemma hardware trojan-benchmarks: Functionally restructured hardware trojan benchmarks,” https://github.com/NMSU-PEARL/Seeker-s-Dilemma-Hardware-Trojan-Benchmarks, [Accessed 27-02-2024].
  14. M. Xue, C. Gu, W. Liu, S. Yu, and M. O’Neill, “Ten years of hardware trojans: a survey from the attacker’s perspective,” IET Computers & Digital Techniques, vol. 14, no. 6, pp. 231–246, 2020.
  15. H. Li, Q. Liu, and J. Zhang, “A survey of hardware trojan threat and defense,” Integration, vol. 55, pp. 426–437, 2016.
  16. T. Hoque, R. S. Chakraborty, and S. Bhunia, “Hardware obfuscation and logic locking: A tutorial introduction,” IEEE Design & Test, vol. 37, no. 3, pp. 59–77, 2020.
  17. Y. Lyu and P. Mishra, “Scalable activation of rare triggers in hardware trojans by repeated maximal clique sampling,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 40, no. 7, pp. 1287–1300, 2020.
  18. H. Salmani, “Cotd: Reference-free hardware trojan detection and recovery based on controllability and observability in gate-level netlist,” IEEE Transactions on Information Forensics and Security, vol. 12, no. 2, pp. 338–350, 2016.
  19. K. I. Gubbi, B. Saber Latibari, A. Srikanth, T. Sheaves, S. A. Beheshti-Shirazi, S. M. PD, S. Rafatirad, A. Sasan, H. Homayoun, and S. Salehi, “Hardware trojan detection using machine learning: A tutorial,” ACM Transactions on Embedded Computing Systems, vol. 22, no. 3, pp. 1–26, 2023.
  20. L. H. Goldstein and E. L. Thigpen, “Scoap: Sandia controllability/observability analysis program,” in Proceedings of the 17th Design Automation Conference, 1980, pp. 190–196.
  21. H. Salmani, M. Tehranipoor, and R. Karri, “On design vulnerability analysis and trust benchmarks development,” in 2013 IEEE 31st international conference on computer design (ICCD).   IEEE, 2013, pp. 471–474.
  22. A. Sarihi, A. Patooghy, P. Jamieson, and B. A.-H. A., “Hardware trojan insertion using reinforcement learning,” in Proceedings of the Great Lakes Symposium on VLSI 2022, 2022, pp. 139–142.
  23. K. G. Liakos, G. K. Georgakilas, F. C. Plessas, and P. Kitsos, “Gainesis: Generative artificial intelligence netlists synthesis,” Electronics, vol. 11, no. 2, p. 245, 2022.
  24. S. Yu, W. Liu, and M. O’Neill, “An improved automatic hardware trojan generation platform,” in 2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI).   IEEE, 2019, pp. 302–307.
  25. C. A. Kamhoua, H. Zhao, M. Rodriguez, and K. A. Kwiat, “A game-theoretic approach for testing for hardware trojans,” IEEE Transactions on Multi-Scale Computing Systems, vol. 2, no. 3, pp. 199–210, 2016.
  26. W. Saad, A. Sanjab, Y. Wang, C. A. Kamhoua, and K. A. Kwiat, “Hardware trojan detection game: A prospect-theoretic approach,” IEEE Transactions on Vehicular Technology, vol. 66, no. 9, pp. 7697–7710, 2017.
  27. D. Kahneman and A. Tversky, “Prospect theory: An analysis of decision under risk,” in Handbook of the fundamentals of financial decision making: Part I.   World Scientific, 2013, pp. 99–127.
  28. T. Das, A. R. Eldosouky, and S. Sengupta, “Think smart, play dumb: Analyzing deception in hardware trojan detection using game theory,” in 2020 International Conference on Cyber Security and Protection of Digital Services (Cyber Security).   IEEE, 2020, pp. 1–8.
  29. S. Brahma, L. Njilla, and S. Nan, “Game theoretic hardware trojan testing under cost considerations,” in International Conference on Decision and Game Theory for Security.   Springer, 2021, pp. 251–270.
  30. S. Nan, L. Njilla, S. Brahma, and C. A. Kamhoua, “Game and prospect theoretic hardware trojan testing,” in 2023 57th Annual Conference on Information Sciences and Systems (CISS).   IEEE, 2023, pp. 1–6.
  31. V. Gohil, M. Tressler, K. Sipple, S. Patnaik, and J. Rajendran, “Games, dollars, splits: A game-theoretic analysis of split manufacturing,” IEEE Transactions on Information Forensics and Security, vol. 16, pp. 5077–5092, 2021.
  32. R. Isaacs, “Differential games, siam series in applied mathematics,” 1965.
  33. M. Chapman, G. Tyson, P. McBurney, M. Luck, and S. Parsons, “Playing hide-and-seek: an abstract game for cyber security,” in Proceedings of the 1st International Workshop on Agents and CyberSecurity, 2014, pp. 1–8.
  34. P. Jamieson, A. Sanaullah, and M. Herbordt, “Benchmarking heterogeneous hpc systems including reconfigurable fabrics: Community aspirations for ideal comparisons,” in 2018 IEEE High Performance extreme Computing Conference (HPEC).   IEEE, 2018, pp. 1–6.
  35. P. Jamieson, T. Becker, P. Y. Cheung, W. Luk, T. Rissa, and T. Pitkänen, “Benchmarking and evaluating reconfigurable architectures targeting the mobile domain,” ACM Transactions on Design Automation of Electronic Systems (TODAES), vol. 15, no. 2, pp. 1–24, 2010.
  36. D. Bryan, “The iscas’85 benchmark circuits and netlist format,” North Carolina State University, vol. 25, p. 39, 1985.
  37. K. Reshma, M. Priyatharishini, and M. Nirmala Devi, “Hardware trojan detection using deep learning technique,” in Soft Computing and Signal Processing: Proceedings of ICSCSP 2018, Volume 2.   Springer, 2019, pp. 671–680.
  38. V. Jyothi, P. Krishnamurthy, F. Khorrami, and R. Karri, “Taint: Tool for automated insertion of trojans,” in 2017 IEEE International Conference on Computer Design (ICCD).   IEEE, 2017, pp. 545–548.
  39. Y. Pan, “Teaching parallel programming using both high-level and low-level languages,” Computational Science—ICCS 2002, pp. 888–897, 2002.
  40. A. Mishchenko and R. Brayton, “Integrating an aig package, simulator, and sat solver,” in International Workshop on Logic and Synthesis (IWLS), 2018, pp. 11–16.
  41. A. B. Chowdhury, B. Tan, R. Karri, and S. Garg, “Openabc-d: A large-scale dataset for machine learning guided integrated circuit synthesis,” arXiv preprint arXiv:2110.11292, 2021.
  42. A. Mishchenko, S. Chatterjee, R. Jiang, and R. K. Brayton, “Fraigs: A unifying representation for logic synthesis and verification,” ERL Technical Report, Tech. Rep., 2005.
  43. R. Brayton and A. Mishchenko, “Abc: An academic industrial-strength verification tool,” in Computer Aided Verification: 22nd International Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings 22.   Springer, 2010, pp. 24–40.
  44. A. Mishchenko, “Introduction to logic synthesis with abc,” http://cc.ee.ntu.edu.tw/~jhjiang/instruction/courses/fall14-lsv/lec01-abc_4p.pdf.
  45. M. C. Hansen, H. Yalcin, and J. P. Hayes, “Unveiling the iscas-85 benchmarks: A case study in reverse engineering,” IEEE Design & Test of Computers, vol. 16, no. 3, pp. 72–80, 1999.
  46. R. Bro and A. K. Smilde, “Principal component analysis,” Analytical methods, vol. 6, no. 9, pp. 2812–2831, 2014.
  47. P. Liu, L. Wu, Z. Zhang, D. Xiao, X. Zhang, and L. Wang, “A pca based svm hardware trojan detection approach,” in 2022 IEEE 16th International Conference on Anti-counterfeiting, Security, and Identification (ASID).   IEEE, 2022, pp. 1–5.
  48. R. Shende and D. D. Ambawade, “A side channel based power analysis technique for hardware trojan detection using statistical learning approach,” in 2016 thirteenth international conference on wireless and optical communications networks (WOCN).   IEEE, 2016, pp. 1–4.
  49. L. Wang, H. Xie, and H. Luo, “Malicious circuitry detection using transient power analysis for ic security,” in 2013 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE).   IEEE, 2013, pp. 1164–1167.
  50. L. Amarú, P.-E. Gaillardon, and G. De Micheli, “The epfl combinational benchmark suite,” in Proceedings of the 24th International Workshop on Logic & Synthesis (IWLS), no. CONF, 2015.
Citations (1)

Summary

We haven't generated a summary for this paper yet.