Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Clique Decompositions in Random Graphs via Refined Absorption (2402.17857v1)

Published 27 Feb 2024 in math.CO

Abstract: We prove that if $p\ge n{-\frac{1}{3}+\beta}$ for some $\beta > 0$, then asymptotically almost surely the binomial random graph $G(n,p)$ has a $K_3$-packing containing all but at most $n + O(1)$ edges. Similarly, we prove that if $d \ge n{\frac{2}{3}+\beta}$ for some $\beta > 0$ and $d$ is even, then asymptotically almost surely the random $d$-regular graph $G_{n,d}$ has a triangle decomposition provided $3 \mid d \cdot n$. We also show that $G(n,p)$ admits a fractional $K_3$-decomposition for such a value of $p$. We prove analogous versions for a $K_q$-packing of $G(n,p)$ with $p\ge n{-\frac{1}{q+0.5}+\beta}$ and leave of $(q-2)n+O(1)$ edges, for $K_q$-decompositions of $G_{n,d}$ with $(q-1)~|~d$ and $d\ge n{1-\frac{1}{q+0.5}+\beta}$ provided $q\mid d\cdot n$, and for fractional $K_q$-decompositions.

Citations (3)

Summary

We haven't generated a summary for this paper yet.