Latent Neural PDE Solver: a reduced-order modelling framework for partial differential equations (2402.17853v1)
Abstract: Neural networks have shown promising potential in accelerating the numerical simulation of systems governed by partial differential equations (PDEs). Different from many existing neural network surrogates operating on high-dimensional discretized fields, we propose to learn the dynamics of the system in the latent space with much coarser discretizations. In our proposed framework - Latent Neural PDE Solver (LNS), a non-linear autoencoder is first trained to project the full-order representation of the system onto the mesh-reduced space, then a temporal model is trained to predict the future state in this mesh-reduced space. This reduction process simplifies the training of the temporal model by greatly reducing the computational cost accompanying a fine discretization. We study the capability of the proposed framework and several other popular neural PDE solvers on various types of systems including single-phase and multi-phase flows along with varying system parameters. We showcase that it has competitive accuracy and efficiency compared to the neural PDE solver that operates on full-order space.
- Li, Z.; Kovachki, N. B.; Azizzadenesheli, K.; liu, B.; Bhattacharya, K.; Stuart, A.; Anandkumar, A. Fourier Neural Operator for Parametric Partial Differential Equations. International Conference on Learning Representations. 2021
- Sanchez-Gonzalez, A.; Godwin, J.; Pfaff, T.; Ying, R.; Leskovec, J.; Battaglia, P. Learning to simulate complex physics with graph networks. International conference on machine learning. 2020; pp 8459–8468
- Pfaff, T.; Fortunato, M.; Sanchez-Gonzalez, A.; Battaglia, P. Learning Mesh-Based Simulation with Graph Networks. International Conference on Learning Representations. 2021
- Brandstetter, J.; Worrall, D. E.; Welling, M. Message Passing Neural PDE Solvers. International Conference on Learning Representations. 2022
- Stachenfeld, K.; Fielding, D. B.; Kochkov, D.; Cranmer, M.; Pfaff, T.; Godwin, J.; Cui, C.; Ho, S.; Battaglia, P.; Sanchez-Gonzalez, A. Learned Simulators for Turbulence. International Conference on Learning Representations. 2022
- Cao, S. Choose a Transformer: Fourier or Galerkin. Advances in Neural Information Processing Systems. 2021; pp 24924–24940
- Gupta, J. K.; Brandstetter, J. Towards Multi-spatiotemporal-scale Generalized PDE Modeling. Transactions on Machine Learning Research 2023,
- Li, Z.; Kovachki, N.; Azizzadenesheli, K.; Liu, B.; Stuart, A.; Bhattacharya, K.; Anandkumar, A. Multipole graph neural operator for parametric partial differential equations. Advances in Neural Information Processing Systems. 2020; pp 6755–6766
- Wang, R.; Kashinath, K.; Mustafa, M.; Albert, A.; Yu, R. Towards physics-informed deep learning for turbulent flow prediction. Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020; pp 1457–1466
- Rahman, M. A.; Ross, Z. E.; Azizzadenesheli, K. U-NO: U-shaped Neural Operators. Transactions on Machine Learning Research 2023,
- Ho, J.; Jain, A.; Abbeel, P. Denoising diffusion probabilistic models. Advances in neural information processing systems. 2020; pp 6840–6851
- Han, X.; Gao, H.; Pfaff, T.; Wang, J.-X.; Liu, L. Predicting Physics in Mesh-reduced Space with Temporal Attention. International Conference on Learning Representations. 2022
- Ummenhofer, B.; Prantl, L.; Thuerey, N.; Koltun, V. Lagrangian Fluid Simulation with Continuous Convolutions. International Conference on Learning Representations. 2020
- Prantl, L.; Ummenhofer, B.; Koltun, V.; Thuerey, N. Guaranteed conservation of momentum for learning particle-based fluid dynamics. Advances in Neural Information Processing Systems. 2022; pp 6901–6913
- Lötzsch, W.; Ohler, S.; Otterbach, J. Learning the Solution Operator of Boundary Value Problems using Graph Neural Networks. ICML 2022 2nd AI for Science Workshop. 2022
- JANNY, S.; Bénéteau, A.; Nadri, M.; Digne, J.; THOME, N.; Wolf, C. EAGLE: Large-scale Learning of Turbulent Fluid Dynamics with Mesh Transformers. International Conference on Learning Representations. 2023
- Rasp, S.; Dueben, P. D.; Scher, S.; Weyn, J. A.; Mouatadid, S.; Thuerey, N. WeatherBench: A Benchmark Data Set for Data-Driven Weather Forecasting. Journal of Advances in Modeling Earth Systems 2020, 12
- Nguyen, T.; Brandstetter, J.; Kapoor, A.; Gupta, J. K.; Grover, A. ClimaX: A foundation model for weather and climate. Proceedings of the 40th International Conference on Machine Learning. 2023; pp 25904–25938
- Kurth, T.; Subramanian, S.; Harrington, P.; Pathak, J.; Mardani, M.; Hall, D.; Miele, A.; Kashinath, K.; Anandkumar, A. Fourcastnet: Accelerating global high-resolution weather forecasting using adaptive fourier neural operators. Proceedings of the Platform for Advanced Scientific Computing Conference. 2023; pp 1–11
- Brandstetter, J.; van den Berg, R.; Welling, M.; Gupta, J. K. Clifford Neural Layers for PDE Modeling. International Conference on Learning Representations. 2023
- Li, Z.; Kovachki, N.; Azizzadenesheli, K.; Liu, B.; Bhattacharya, K.; Stuart, A.; Anandkumar, A. Neural operator: Graph kernel network for partial differential equations. arXiv preprint arXiv:2003.03485 2020,
- Brandstetter, J.; Welling, M.; Worrall, D. E. Lie Point Symmetry Data Augmentation for Neural PDE Solvers. Proceedings of the 39th International Conference on Machine Learning. 2022; pp 2241–2256
- Gupta, G.; Xiao, X.; Bogdan, P. Multiwavelet-based Operator Learning for Differential Equations. Advances in Neural Information Processing Systems. 2021
- Li, Z.; Meidani, K.; Farimani, A. B. Transformer for Partial Differential Equations’ Operator Learning. Transactions on Machine Learning Research 2023,
- Hao, Z.; Wang, Z.; Su, H.; Ying, C.; Dong, Y.; Liu, S.; Cheng, Z.; Song, J.; Zhu, J. GNOT: A General Neural Operator Transformer for Operator Learning. Proceedings of the 40th International Conference on Machine Learning. 2023; pp 12556–12569
- Ovadia, O.; Kahana, A.; Stinis, P.; Turkel, E.; Karniadakis, G. E. ViTO: Vision Transformer-Operator. arXiv preprint arXiv:2303.08891 2023,
- Li, Z.; Kovachki, N.; Azizzadenesheli, K.; Liu, B.; Bhattacharya, K.; Stuart, A.; Anandkumar, A. Neural Operator: Graph Kernel Network for Partial Differential Equations. 2020,
- Tran, A.; Mathews, A.; Xie, L.; Ong, C. S. Factorized Fourier Neural Operators. The Eleventh International Conference on Learning Representations. 2023
- Guibas, J.; Mardani, M.; Li, Z.; Tao, A.; Anandkumar, A.; Catanzaro, B. Efficient Token Mixing for Transformers via Adaptive Fourier Neural Operators. International Conference on Learning Representations. 2022
- Li, Z.; Zheng, H.; Kovachki, N.; Jin, D.; Chen, H.; Liu, B.; Azizzadenesheli, K.; Anandkumar, A. Physics-Informed Neural Operator for Learning Partial Differential Equations. 2023,
- Lorsung, C.; Farimani, A. B. PICL: Physics Informed Contrastive Learning for Partial Differential Equations. 2024
- Lorsung, C.; Li, Z.; Farimani, A. B. Physics Informed Token Transformer for Solving Partial Differential Equations. 2024
- Razavi, A.; Van den Oord, A.; Vinyals, O. Generating diverse high-fidelity images with vq-vae-2. Advances in neural information processing systems. 2019
- Esser, P.; Rombach, R.; Ommer, B. Taming transformers for high-resolution image synthesis. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021; pp 12873–12883
- Rombach, R.; Blattmann, A.; Lorenz, D.; Esser, P.; Ommer, B. High-resolution image synthesis with latent diffusion models. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022; pp 10684–10695
- Zeng, X.; Vahdat, A.; Williams, F.; Gojcic, Z.; Litany, O.; Fidler, S.; Kreis, K. LION: Latent Point Diffusion Models for 3D Shape Generation. Advances in Neural Information Processing Systems. 2022
- Hsieh, J.-T.; Zhao, S.; Eismann, S.; Mirabella, L.; Ermon, S. Learning Neural PDE Solvers with Convergence Guarantees. International Conference on Learning Representations. 2019
- Lee, K.; Carlberg, K. T. Deep Conservation: A Latent-Dynamics Model for Exact Satisfaction of Physical Conservation Laws. 2021; pp 277–285
- Wiewel, S.; Becher, M.; Thürey, N. Latent Space Physics: Towards Learning the Temporal Evolution of Fluid Flow. Computer Graphics Forum 2019, 38
- Morton, J.; Jameson, A.; Kochenderfer, M. J.; Witherden, F. Deep Dynamical Modeling and Control of Unsteady Fluid Flows. Advances in Neural Information Processing Systems. 2018
- Li, Y.; He, H.; Wu, J.; Katabi, D.; Torralba, A. Learning Compositional Koopman Operators for Model-Based Control. International Conference on Learning Representations. 2020
- Takeishi, N.; Kawahara, Y.; Yairi, T. Learning Koopman Invariant Subspaces for Dynamic Mode Decomposition. Advances in Neural Information Processing Systems. 2017
- Hemmasian, A.; Barati Farimani, A. Reduced-order modeling of fluid flows with transformers. Physics of Fluids 2023, 35
- Hemmasian, A.; Farimani, A. B. Multi-scale Time-stepping of Partial Differential Equations with Transformers. 2023
- van den Oord, A.; Vinyals, O.; kavukcuoglu, k. Neural Discrete Representation Learning. Advances in Neural Information Processing Systems. 2017
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A. N.; Kaiser, L. u.; Polosukhin, I. Attention is All you Need. Advances in Neural Information Processing Systems. 2017
- Zhang, H.; Goodfellow, I.; Metaxas, D.; Odena, A. Self-Attention Generative Adversarial Networks. Proceedings of the 36th International Conference on Machine Learning. 2019; pp 7354–7363
- Guo, R.; Cao, S.; Chen, L. Transformer Meets Boundary Value Inverse Problems. International Conference on Learning Representations. 2023
- Li, Z.; Shu, D.; Farimani, A. B. Scalable Transformer for PDE Surrogate Modeling. Thirty-seventh Conference on Neural Information Processing Systems. 2023
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016
- Ulyanov, D.; Vedaldi, A.; Lempitsky, V. Instance normalization: The missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022 2016,
- Ba, J. L.; Kiros, J. R.; Hinton, G. E. Layer normalization. arXiv preprint arXiv:1607.06450 2016,
- Trockman, A.; Kolter, J. Z. Patches Are All You Need? Transactions on Machine Learning Research 2023, Featured Certification
- Tolstikhin, I.; Houlsby, N.; Kolesnikov, A.; Beyer, L.; Zhai, X.; Unterthiner, T.; Yung, J.; Steiner, A. P.; Keysers, D.; Uszkoreit, J.; Lucic, M.; Dosovitskiy, A. MLP-Mixer: An all-MLP Architecture for Vision. Advances in Neural Information Processing Systems. 2021
- Nichol, A. Q.; Dhariwal, P. Improved Denoising Diffusion Probabilistic Models. Proceedings of the 38th International Conference on Machine Learning. 2021; pp 8162–8171
- Reynolds, O. IV. On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philosophical transactions of the royal society of london.(a.) 1895, 123–164
- Launder, B. E.; Spalding, D. B. The numerical computation of turbulent flows. 1983, 96–116
- Rognebakke, O. F.; Faltinsen, O. M. Sloshing induced impact with air cavity in rectangular tank with a high filling ratio. 20th international workshop on water waves and floating bodies. 2005; pp 217–20
- Wu, Y.; He, K. Group normalization. Proceedings of the European conference on computer vision (ECCV). 2018; pp 3–19
- Vahdat, A.; Kreis, K.; Kautz, J. Score-based Generative Modeling in Latent Space. Advances in Neural Information Processing Systems. 2021
- Patankar, S. V. Numerical methods in heat transfer. International Heat Transfer Conference Digital Library. 1982