Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robustly Learning Single-Index Models via Alignment Sharpness (2402.17756v1)

Published 27 Feb 2024 in cs.LG, cs.DS, math.OC, math.ST, stat.ML, and stat.TH

Abstract: We study the problem of learning Single-Index Models under the $L_22$ loss in the agnostic model. We give an efficient learning algorithm, achieving a constant factor approximation to the optimal loss, that succeeds under a range of distributions (including log-concave distributions) and a broad class of monotone and Lipschitz link functions. This is the first efficient constant factor approximate agnostic learner, even for Gaussian data and for any nontrivial class of link functions. Prior work for the case of unknown link function either works in the realizable setting or does not attain constant factor approximation. The main technical ingredient enabling our algorithm and analysis is a novel notion of a local error bound in optimization that we term alignment sharpness and that may be of broader interest.

Citations (4)

Summary

We haven't generated a summary for this paper yet.