2000 character limit reached
Decompositions of hyperbolic Kac-Moody algebras with respect to imaginary root groups (2402.17737v2)
Published 27 Feb 2024 in math.RT and hep-th
Abstract: We propose a novel way to define imaginary root subgroups associated with (timelike) imaginary roots of hyperbolic Kac-Moody algebras. Using in an essential way the theory of unitary irreducible representation of covers of the group SO(2,1), these imaginary root subgroups act on the complex Kac-Moody algebra viewed as a Hilbert space. We illustrate our new view on Kac-Moody groups by considering the example of a rank-two hyperbolic algebra that is related to the Fibonacci numbers. We also point out some open issues and new avenues for further research, and briefly discuss the potential relevance of the present results for physics and current attempts at unification.
- V. G. Kac, “Simple irreducible graded Lie algebras of finite growth,” Izv. Akad. Nauk. SSSR 32 (1968), 1323–1376 (in Russian) [English transl. : Math. USSR-Izv. 2 (1968), 1271–1311].
- R. V. Moody, “A new class of Lie algebras,” J. Algebra 10 (1968), 210–230.
- O. Gabber and V. G. Kac, “On defining relations of certain infinite-dimensional Lie algebras,” Bull. Amer. Math. Soc. 5 (1981), 185–189.
- T. Damour, M. Henneaux and H. Nicolai, “E(10) and a ‘small tension expansion’ of M theory,” Phys. Rev. Lett. 89 (2002), 221601, [hep-th/0207267].
- H. Nicolai and T. Fischbacher, “Low level representations for E1010{}_{10}start_FLOATSUBSCRIPT 10 end_FLOATSUBSCRIPT and E1111{}_{11}start_FLOATSUBSCRIPT 11 end_FLOATSUBSCRIPT,” Contribution to the Proceedings of the Ramanujan International Symposium on Kac–Moody Algebras and Applications, ISKMAA-2002, Chennai, India, 28–31 January, [hep-th/0301017].
- A. Kleinschmidt and H. Nicolai, “E(10) and SO(9,9) invariant supergravity,” JHEP 07 (2004), 041, [hep-th/0407101].
- A. Kleinschmidt and H. Nicolai, “IIB supergravity and E(10),” Phys. Lett. B 606 (2005), 391–402, [hep-th/0411225].
- A. J. Feingold and I. B. Frenkel, “A hyperbolic Kac-Moody algebra and the theory of Siegel modular forms of genus 2,” Math. Ann. 263 (1983), 87–144.
- H. Nicolai and H. Samtleben, “On K(E(9)),” Q. J. Pure Appl. Math. 1 (2005), 180–204, [hep-th/0407055].
- S. de Buyl, M. Henneaux and L. Paulot, “Hidden symmetries and Dirac fermions,” Class. Quant. Grav. 22 (2005), 3595-3622, [hep-th/0506009].
- T. Damour, A. Kleinschmidt and H. Nicolai, “Hidden symmetries and the fermionic sector of eleven-dimensional supergravity,” Phys. Lett. B 634 (2006), 319–324, [hep-th/0512163].
- S. de Buyl, M. Henneaux and L. Paulot, “Extended E(8) invariance of 11-dimensional supergravity,” JHEP 02 (2006), 056, [hep-th/0512292].
- T. Damour, A. Kleinschmidt and H. Nicolai, “K(E(10)), Supergravity and Fermions,” JHEP 08 (2006), 046, [hep-th/0606105].
- A. Kleinschmidt, R. Köhl, R. Lautenbacher and H. Nicolai, “Representations of Involutory Subalgebras of Affine Kac–Moody Algebras,” Commun. Math. Phys. 392 (2022) no.1, 89-123, [2102.00870 [math.RT]].
- S. Berman, “On generators and relations for certain involutory subalgebras of Kac-Moody Lie algebras,” Communications in Algebra 17, no. 12, (1989), 3165–3185.
- A. J. Feingold and H. Nicolai, “Subalgebras of hyperbolic Kac-Moody Algebras,” Contemporary Mathematics 343 (2004), 97–114.
- A. J. Feingold, “A hyperbolic GCM Lie algebra and the Fibonacci numbers,” Proc. Amer. Math. Soc. 80, (1980), 379–385.
- D. Penta, “Decomposition of the rank 3 Kac-Moody Lie algebra ℱℱ\mathcal{F}caligraphic_F with respect to the rank 2 hyperbolic subalgebra Fib𝐹𝑖𝑏Fibitalic_F italic_i italic_b,” [1605.06901 [math.RA]].
- T. Marquis, “On the structure of Kac–Moody algebras,” Canad. J. Math. 73 (2021), 1124—152, [1810.05562 [math.RA]].
- L. Pukánszky, “On the Kronecker products of irreducible representations of the 2x2 real unimodular group. I,” Trans. Amer. Math. Soc. 100 (1961), 116–152.
- J. Repka, “Tensor products of unitary representations of SL(2,ℝ)𝑆𝐿2ℝSL(2,\mathbb{R})italic_S italic_L ( 2 , blackboard_R ),” Amer. J. Math. 100 (1978) 747–774; Bull. Amer. Math. Soc. 82 (1976) 930–932; PhD Thesis (1975, Yale University) 225 pp.
- L. Houart, A. Kleinschmidt and J. Lindman Hornlund, “An M-theory solution from null roots in E11subscript𝐸11E_{11}italic_E start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT,” JHEP 01 (2011), 154, [1101.2816 [hep-th]].
- J. Brown, O. J. Ganor and C. Helfgott, “M theory and E(10): Billiards, branes, and imaginary roots,” JHEP 08 (2004), 063, [hep-th/0401053].
- T. Damour and H. Nicolai, “Higher order M theory corrections and the Kac-Moody algebra E(10),” Class. Quant. Grav. 22 (2005), 2849–2880, [hep/th0410245].
- D. H. Peterson, V. G. Kac, “Infinite flag varieties and conjugacy theorems,” Proc. Nat. Acad. Sci. U.S.A. 80 (1983), 1778–1782.
- H. Nicolai and D. I. Olive, “The Principal SO(1,2) subalgebra of a hyperbolic Kac-Moody algebra,” Lett. Math. Phys. 58 (2001), 141, [hep-th/0107146].
- H. Tsurusaki, “𝔰𝔩2𝔰subscript𝔩2{\mathfrak{sl}}_{2}fraktur_s fraktur_l start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT triples whose nilpositive elements are in a space which is spanned by the real root vectors in rank-2 symmetric hyperbolic Kac-Moody Lie algebras,” [2107.05234 [math.RT]].
- J. Fröhlich and P.A. Marchetti, “Quantum Field Theory of Anyons,” Lett. Math. Phys. 16 (1988), 347.
- J. Fröhlich and P.A. Marchetti, “Quantum Field Theory of Vortices and Anyons,” Commun. Math. Phys. 121 (1989), 177–223.
- M. Lüscher, “Bosonization in 2+1 Dimensions,” Nucl. Phys. B 326 (1989), 557–582.
- R. Jackiw and V.P. Nair, “Relativistic wave equations for anyons,” Phys. Rev. D 43 (1991), 1933–1942.
- J. L. Cortes and M. S. Plyushchay, “Anyons: Minimal and extended formulations,” Mod. Phys. Lett. A 10 (1995), 409, [hep-th/9405181].
- J. L. Cortes and M. S. Plyushchay, “Anyons as spinning particles,” Int. J. Mod. Phys. A 11 (1996), 3331, [hep-th/9505117].
- V. Bargmann, “Irreducible unitary representations of the Lorentz group,” Annals Math. 48 (1947), 568.
- T. De Medts, R. Gramlich, M. Horn, “Iwasawa decompositions of split Kac-Moody groups,” J. Lie Theory 19 (2009), 311–337, [0709.3466 [math.GR]].
- G. Bossard, F. Ciceri, G. Inverso, A. Kleinschmidt and H. Samtleben, “E99{}_{9}start_FLOATSUBSCRIPT 9 end_FLOATSUBSCRIPT exceptional field theory. Part II. The complete dynamics,” JHEP 05 (2021), 107, [2103.12118 [hep-th]].
- G. Bossard, A. Kleinschmidt and E. Sezgin, “A master exceptional field theory,” JHEP 06 (2021), 185, [2103.13411 [hep-th]].
- P. C. West, “Very extended E(8) and A(8) at low levels, gravity and supergravity,” Class. Quant. Grav. 20 (2003), 2393-2406, [hep-th/0212291].
- A. Kleinschmidt, I. Schnakenburg and P. C. West, “Very extended Kac-Moody algebras and their interpretation at low levels,” Class. Quant. Grav. 21 (2004), 2493-2525, [hep-th/0309198].
- G. M. Benkart, S.-J. Kang and K. C. Misra, “Graded Lie algebras of Kac-Moody type,” Adv. in Math. 97 (1993), 154–190.
- S.-J. Kang, “On the hyperbolic Kac-Moody Lie algebra HA1(1)𝐻superscriptsubscript𝐴11HA_{1}^{(1)}italic_H italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT,” Transactions of the American Mathematical Society 341 (1994).
- M. Bauer and D. Bernard, “On root multiplicities of some hyperbolic Kac–Moody algebras,” Letters in Math. Phys. 42 (1997), 153–166, [hep-th/9612210].
- B. Kolman and R. E. Beck, “Computers in Lie Algebras. II: Calculation of Outer Multiplicities,” SIAM Journal on Applied Mathematics 25 (1973), 313–323.
- L. Pukánszky “The Plancherel formula for the universal covering group of SL(2,R),” Math. Ann. 156 (1964) 96–143.
- P. J. Sally, Jr., “Analytic continuation of the irreducible unitary representations of the universal covering group of the 2×2222\times 22 × 2 real unimodular group,” PhD thesis (Brandeis, 1965).
- G D.Hauser, “Eisenstein distributions on the universal cover of SL(2,ℝ)𝑆𝐿2ℝSL(2,\mathbb{R})italic_S italic_L ( 2 , blackboard_R ),” Dissertation, Rutgers, The State University of New Jersey (2023).