An all-frequency stable integral system for Maxwell's equations in 3-D penetrable media: continuous and discrete model analysis (2402.17713v2)
Abstract: We introduce a new system of surface integral equations for Maxwell's transmission problem in three dimensions. This system has two remarkable features, both of which we prove. First, it is well-posed at all frequencies. Second, the underlying linear operator has a uniformly bounded inverse as the frequency approaches zero, ensuring that there is no low-frequency breakdown. The system is derived from a formulation we introduced in our previous work, which required additional integral constraints to ensure well -posedness across all frequencies. In this study, we eliminate those constraints and demonstrate that our new self adjoint, constraints-free linear system expressed in the desirable form of an identity plus a compact weakly-singular operator is stable for all frequencies. Furthermore, we propose and analyze a fully discrete numerical method for these systems and provide a proof of spectrally accurate convergence for the computational method. We also computationally demonstrate the high-order accuracy of the algorithm using benchmark scatterers with curved surfaces.
- Hulst, H.C.: Light Scattering by Small Particles. Dover Publications Inc., (1981) Kristensson [2016] Kristensson, G.: Scattering of Electromagnetic Waves by Obstacles. SciTech, (2016) Rother and Kahnert [2013] Rother, T., Kahnert, M.: Electromagnetic Wave Scattering on Nonspherical Particles: Basic Methodology and Simulations, 2nd edn. Springer, (2013) Costabel and Louër [2011] Costabel, M., Louër, F.L.: On the Kleinman–Martin integral equation method for electromagnetic scattering by a dielectric body. SIAM J. Appl. Math. 71, 635–656 (2011) Colton and Kress [2019] Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 4th edn. Springer, (2019) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations. Springer, (2001) Epstein and Greengard [2009] Epstein, C., Greengard, L.: Debye sources and the numerical solution of the time harmonic Maxwell equations. Comm. Pure Appl. Math. 63, 413–463 (2009) Ganesh et al. [2014] Ganesh, M., Hawkins, S., Volkov, D.: An all-frequency weakly-singular surface integral equation for electromagnetism in dielectric media: Reformulation and well-posedness analysis. Journal of Mathematical Analysis and Applications 412(1), 277–300 (2014) Ylä-Oijala and Taskinen [2005] Ylä-Oijala, P., Taskinen, M.: Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects. IEEE Antennas and Propagation 53, 3316–3325 (2005) Taskinen and Vanska [2007] Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Kristensson, G.: Scattering of Electromagnetic Waves by Obstacles. SciTech, (2016) Rother and Kahnert [2013] Rother, T., Kahnert, M.: Electromagnetic Wave Scattering on Nonspherical Particles: Basic Methodology and Simulations, 2nd edn. Springer, (2013) Costabel and Louër [2011] Costabel, M., Louër, F.L.: On the Kleinman–Martin integral equation method for electromagnetic scattering by a dielectric body. SIAM J. Appl. Math. 71, 635–656 (2011) Colton and Kress [2019] Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 4th edn. Springer, (2019) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations. Springer, (2001) Epstein and Greengard [2009] Epstein, C., Greengard, L.: Debye sources and the numerical solution of the time harmonic Maxwell equations. Comm. Pure Appl. Math. 63, 413–463 (2009) Ganesh et al. [2014] Ganesh, M., Hawkins, S., Volkov, D.: An all-frequency weakly-singular surface integral equation for electromagnetism in dielectric media: Reformulation and well-posedness analysis. Journal of Mathematical Analysis and Applications 412(1), 277–300 (2014) Ylä-Oijala and Taskinen [2005] Ylä-Oijala, P., Taskinen, M.: Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects. IEEE Antennas and Propagation 53, 3316–3325 (2005) Taskinen and Vanska [2007] Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Rother, T., Kahnert, M.: Electromagnetic Wave Scattering on Nonspherical Particles: Basic Methodology and Simulations, 2nd edn. Springer, (2013) Costabel and Louër [2011] Costabel, M., Louër, F.L.: On the Kleinman–Martin integral equation method for electromagnetic scattering by a dielectric body. SIAM J. Appl. Math. 71, 635–656 (2011) Colton and Kress [2019] Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 4th edn. Springer, (2019) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations. Springer, (2001) Epstein and Greengard [2009] Epstein, C., Greengard, L.: Debye sources and the numerical solution of the time harmonic Maxwell equations. Comm. Pure Appl. Math. 63, 413–463 (2009) Ganesh et al. [2014] Ganesh, M., Hawkins, S., Volkov, D.: An all-frequency weakly-singular surface integral equation for electromagnetism in dielectric media: Reformulation and well-posedness analysis. Journal of Mathematical Analysis and Applications 412(1), 277–300 (2014) Ylä-Oijala and Taskinen [2005] Ylä-Oijala, P., Taskinen, M.: Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects. IEEE Antennas and Propagation 53, 3316–3325 (2005) Taskinen and Vanska [2007] Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Costabel, M., Louër, F.L.: On the Kleinman–Martin integral equation method for electromagnetic scattering by a dielectric body. SIAM J. Appl. Math. 71, 635–656 (2011) Colton and Kress [2019] Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 4th edn. Springer, (2019) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations. Springer, (2001) Epstein and Greengard [2009] Epstein, C., Greengard, L.: Debye sources and the numerical solution of the time harmonic Maxwell equations. Comm. Pure Appl. Math. 63, 413–463 (2009) Ganesh et al. [2014] Ganesh, M., Hawkins, S., Volkov, D.: An all-frequency weakly-singular surface integral equation for electromagnetism in dielectric media: Reformulation and well-posedness analysis. Journal of Mathematical Analysis and Applications 412(1), 277–300 (2014) Ylä-Oijala and Taskinen [2005] Ylä-Oijala, P., Taskinen, M.: Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects. IEEE Antennas and Propagation 53, 3316–3325 (2005) Taskinen and Vanska [2007] Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 4th edn. Springer, (2019) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations. Springer, (2001) Epstein and Greengard [2009] Epstein, C., Greengard, L.: Debye sources and the numerical solution of the time harmonic Maxwell equations. Comm. Pure Appl. Math. 63, 413–463 (2009) Ganesh et al. [2014] Ganesh, M., Hawkins, S., Volkov, D.: An all-frequency weakly-singular surface integral equation for electromagnetism in dielectric media: Reformulation and well-posedness analysis. Journal of Mathematical Analysis and Applications 412(1), 277–300 (2014) Ylä-Oijala and Taskinen [2005] Ylä-Oijala, P., Taskinen, M.: Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects. IEEE Antennas and Propagation 53, 3316–3325 (2005) Taskinen and Vanska [2007] Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Nédélec, J.-C.: Acoustic and Electromagnetic Equations. Springer, (2001) Epstein and Greengard [2009] Epstein, C., Greengard, L.: Debye sources and the numerical solution of the time harmonic Maxwell equations. Comm. Pure Appl. Math. 63, 413–463 (2009) Ganesh et al. [2014] Ganesh, M., Hawkins, S., Volkov, D.: An all-frequency weakly-singular surface integral equation for electromagnetism in dielectric media: Reformulation and well-posedness analysis. Journal of Mathematical Analysis and Applications 412(1), 277–300 (2014) Ylä-Oijala and Taskinen [2005] Ylä-Oijala, P., Taskinen, M.: Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects. IEEE Antennas and Propagation 53, 3316–3325 (2005) Taskinen and Vanska [2007] Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Epstein, C., Greengard, L.: Debye sources and the numerical solution of the time harmonic Maxwell equations. Comm. Pure Appl. Math. 63, 413–463 (2009) Ganesh et al. [2014] Ganesh, M., Hawkins, S., Volkov, D.: An all-frequency weakly-singular surface integral equation for electromagnetism in dielectric media: Reformulation and well-posedness analysis. Journal of Mathematical Analysis and Applications 412(1), 277–300 (2014) Ylä-Oijala and Taskinen [2005] Ylä-Oijala, P., Taskinen, M.: Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects. IEEE Antennas and Propagation 53, 3316–3325 (2005) Taskinen and Vanska [2007] Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Ganesh, M., Hawkins, S., Volkov, D.: An all-frequency weakly-singular surface integral equation for electromagnetism in dielectric media: Reformulation and well-posedness analysis. Journal of Mathematical Analysis and Applications 412(1), 277–300 (2014) Ylä-Oijala and Taskinen [2005] Ylä-Oijala, P., Taskinen, M.: Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects. IEEE Antennas and Propagation 53, 3316–3325 (2005) Taskinen and Vanska [2007] Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Ylä-Oijala, P., Taskinen, M.: Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects. IEEE Antennas and Propagation 53, 3316–3325 (2005) Taskinen and Vanska [2007] Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000)
- Kristensson, G.: Scattering of Electromagnetic Waves by Obstacles. SciTech, (2016) Rother and Kahnert [2013] Rother, T., Kahnert, M.: Electromagnetic Wave Scattering on Nonspherical Particles: Basic Methodology and Simulations, 2nd edn. Springer, (2013) Costabel and Louër [2011] Costabel, M., Louër, F.L.: On the Kleinman–Martin integral equation method for electromagnetic scattering by a dielectric body. SIAM J. Appl. Math. 71, 635–656 (2011) Colton and Kress [2019] Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 4th edn. Springer, (2019) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations. Springer, (2001) Epstein and Greengard [2009] Epstein, C., Greengard, L.: Debye sources and the numerical solution of the time harmonic Maxwell equations. Comm. Pure Appl. Math. 63, 413–463 (2009) Ganesh et al. [2014] Ganesh, M., Hawkins, S., Volkov, D.: An all-frequency weakly-singular surface integral equation for electromagnetism in dielectric media: Reformulation and well-posedness analysis. Journal of Mathematical Analysis and Applications 412(1), 277–300 (2014) Ylä-Oijala and Taskinen [2005] Ylä-Oijala, P., Taskinen, M.: Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects. IEEE Antennas and Propagation 53, 3316–3325 (2005) Taskinen and Vanska [2007] Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Rother, T., Kahnert, M.: Electromagnetic Wave Scattering on Nonspherical Particles: Basic Methodology and Simulations, 2nd edn. Springer, (2013) Costabel and Louër [2011] Costabel, M., Louër, F.L.: On the Kleinman–Martin integral equation method for electromagnetic scattering by a dielectric body. SIAM J. Appl. Math. 71, 635–656 (2011) Colton and Kress [2019] Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 4th edn. Springer, (2019) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations. Springer, (2001) Epstein and Greengard [2009] Epstein, C., Greengard, L.: Debye sources and the numerical solution of the time harmonic Maxwell equations. Comm. Pure Appl. Math. 63, 413–463 (2009) Ganesh et al. [2014] Ganesh, M., Hawkins, S., Volkov, D.: An all-frequency weakly-singular surface integral equation for electromagnetism in dielectric media: Reformulation and well-posedness analysis. Journal of Mathematical Analysis and Applications 412(1), 277–300 (2014) Ylä-Oijala and Taskinen [2005] Ylä-Oijala, P., Taskinen, M.: Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects. IEEE Antennas and Propagation 53, 3316–3325 (2005) Taskinen and Vanska [2007] Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Costabel, M., Louër, F.L.: On the Kleinman–Martin integral equation method for electromagnetic scattering by a dielectric body. SIAM J. Appl. Math. 71, 635–656 (2011) Colton and Kress [2019] Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 4th edn. Springer, (2019) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations. Springer, (2001) Epstein and Greengard [2009] Epstein, C., Greengard, L.: Debye sources and the numerical solution of the time harmonic Maxwell equations. Comm. Pure Appl. Math. 63, 413–463 (2009) Ganesh et al. [2014] Ganesh, M., Hawkins, S., Volkov, D.: An all-frequency weakly-singular surface integral equation for electromagnetism in dielectric media: Reformulation and well-posedness analysis. Journal of Mathematical Analysis and Applications 412(1), 277–300 (2014) Ylä-Oijala and Taskinen [2005] Ylä-Oijala, P., Taskinen, M.: Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects. IEEE Antennas and Propagation 53, 3316–3325 (2005) Taskinen and Vanska [2007] Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 4th edn. Springer, (2019) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations. Springer, (2001) Epstein and Greengard [2009] Epstein, C., Greengard, L.: Debye sources and the numerical solution of the time harmonic Maxwell equations. Comm. Pure Appl. Math. 63, 413–463 (2009) Ganesh et al. [2014] Ganesh, M., Hawkins, S., Volkov, D.: An all-frequency weakly-singular surface integral equation for electromagnetism in dielectric media: Reformulation and well-posedness analysis. Journal of Mathematical Analysis and Applications 412(1), 277–300 (2014) Ylä-Oijala and Taskinen [2005] Ylä-Oijala, P., Taskinen, M.: Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects. IEEE Antennas and Propagation 53, 3316–3325 (2005) Taskinen and Vanska [2007] Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Nédélec, J.-C.: Acoustic and Electromagnetic Equations. Springer, (2001) Epstein and Greengard [2009] Epstein, C., Greengard, L.: Debye sources and the numerical solution of the time harmonic Maxwell equations. Comm. Pure Appl. Math. 63, 413–463 (2009) Ganesh et al. [2014] Ganesh, M., Hawkins, S., Volkov, D.: An all-frequency weakly-singular surface integral equation for electromagnetism in dielectric media: Reformulation and well-posedness analysis. Journal of Mathematical Analysis and Applications 412(1), 277–300 (2014) Ylä-Oijala and Taskinen [2005] Ylä-Oijala, P., Taskinen, M.: Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects. IEEE Antennas and Propagation 53, 3316–3325 (2005) Taskinen and Vanska [2007] Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Epstein, C., Greengard, L.: Debye sources and the numerical solution of the time harmonic Maxwell equations. Comm. Pure Appl. Math. 63, 413–463 (2009) Ganesh et al. [2014] Ganesh, M., Hawkins, S., Volkov, D.: An all-frequency weakly-singular surface integral equation for electromagnetism in dielectric media: Reformulation and well-posedness analysis. Journal of Mathematical Analysis and Applications 412(1), 277–300 (2014) Ylä-Oijala and Taskinen [2005] Ylä-Oijala, P., Taskinen, M.: Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects. IEEE Antennas and Propagation 53, 3316–3325 (2005) Taskinen and Vanska [2007] Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Ganesh, M., Hawkins, S., Volkov, D.: An all-frequency weakly-singular surface integral equation for electromagnetism in dielectric media: Reformulation and well-posedness analysis. Journal of Mathematical Analysis and Applications 412(1), 277–300 (2014) Ylä-Oijala and Taskinen [2005] Ylä-Oijala, P., Taskinen, M.: Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects. IEEE Antennas and Propagation 53, 3316–3325 (2005) Taskinen and Vanska [2007] Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Ylä-Oijala, P., Taskinen, M.: Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects. IEEE Antennas and Propagation 53, 3316–3325 (2005) Taskinen and Vanska [2007] Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000)
- Rother, T., Kahnert, M.: Electromagnetic Wave Scattering on Nonspherical Particles: Basic Methodology and Simulations, 2nd edn. Springer, (2013) Costabel and Louër [2011] Costabel, M., Louër, F.L.: On the Kleinman–Martin integral equation method for electromagnetic scattering by a dielectric body. SIAM J. Appl. Math. 71, 635–656 (2011) Colton and Kress [2019] Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 4th edn. Springer, (2019) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations. Springer, (2001) Epstein and Greengard [2009] Epstein, C., Greengard, L.: Debye sources and the numerical solution of the time harmonic Maxwell equations. Comm. Pure Appl. Math. 63, 413–463 (2009) Ganesh et al. [2014] Ganesh, M., Hawkins, S., Volkov, D.: An all-frequency weakly-singular surface integral equation for electromagnetism in dielectric media: Reformulation and well-posedness analysis. Journal of Mathematical Analysis and Applications 412(1), 277–300 (2014) Ylä-Oijala and Taskinen [2005] Ylä-Oijala, P., Taskinen, M.: Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects. IEEE Antennas and Propagation 53, 3316–3325 (2005) Taskinen and Vanska [2007] Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Costabel, M., Louër, F.L.: On the Kleinman–Martin integral equation method for electromagnetic scattering by a dielectric body. SIAM J. Appl. Math. 71, 635–656 (2011) Colton and Kress [2019] Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 4th edn. Springer, (2019) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations. Springer, (2001) Epstein and Greengard [2009] Epstein, C., Greengard, L.: Debye sources and the numerical solution of the time harmonic Maxwell equations. Comm. Pure Appl. Math. 63, 413–463 (2009) Ganesh et al. [2014] Ganesh, M., Hawkins, S., Volkov, D.: An all-frequency weakly-singular surface integral equation for electromagnetism in dielectric media: Reformulation and well-posedness analysis. Journal of Mathematical Analysis and Applications 412(1), 277–300 (2014) Ylä-Oijala and Taskinen [2005] Ylä-Oijala, P., Taskinen, M.: Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects. IEEE Antennas and Propagation 53, 3316–3325 (2005) Taskinen and Vanska [2007] Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 4th edn. Springer, (2019) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations. Springer, (2001) Epstein and Greengard [2009] Epstein, C., Greengard, L.: Debye sources and the numerical solution of the time harmonic Maxwell equations. Comm. Pure Appl. Math. 63, 413–463 (2009) Ganesh et al. [2014] Ganesh, M., Hawkins, S., Volkov, D.: An all-frequency weakly-singular surface integral equation for electromagnetism in dielectric media: Reformulation and well-posedness analysis. Journal of Mathematical Analysis and Applications 412(1), 277–300 (2014) Ylä-Oijala and Taskinen [2005] Ylä-Oijala, P., Taskinen, M.: Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects. IEEE Antennas and Propagation 53, 3316–3325 (2005) Taskinen and Vanska [2007] Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Nédélec, J.-C.: Acoustic and Electromagnetic Equations. Springer, (2001) Epstein and Greengard [2009] Epstein, C., Greengard, L.: Debye sources and the numerical solution of the time harmonic Maxwell equations. Comm. Pure Appl. Math. 63, 413–463 (2009) Ganesh et al. [2014] Ganesh, M., Hawkins, S., Volkov, D.: An all-frequency weakly-singular surface integral equation for electromagnetism in dielectric media: Reformulation and well-posedness analysis. Journal of Mathematical Analysis and Applications 412(1), 277–300 (2014) Ylä-Oijala and Taskinen [2005] Ylä-Oijala, P., Taskinen, M.: Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects. IEEE Antennas and Propagation 53, 3316–3325 (2005) Taskinen and Vanska [2007] Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Epstein, C., Greengard, L.: Debye sources and the numerical solution of the time harmonic Maxwell equations. Comm. Pure Appl. Math. 63, 413–463 (2009) Ganesh et al. [2014] Ganesh, M., Hawkins, S., Volkov, D.: An all-frequency weakly-singular surface integral equation for electromagnetism in dielectric media: Reformulation and well-posedness analysis. Journal of Mathematical Analysis and Applications 412(1), 277–300 (2014) Ylä-Oijala and Taskinen [2005] Ylä-Oijala, P., Taskinen, M.: Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects. IEEE Antennas and Propagation 53, 3316–3325 (2005) Taskinen and Vanska [2007] Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Ganesh, M., Hawkins, S., Volkov, D.: An all-frequency weakly-singular surface integral equation for electromagnetism in dielectric media: Reformulation and well-posedness analysis. Journal of Mathematical Analysis and Applications 412(1), 277–300 (2014) Ylä-Oijala and Taskinen [2005] Ylä-Oijala, P., Taskinen, M.: Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects. IEEE Antennas and Propagation 53, 3316–3325 (2005) Taskinen and Vanska [2007] Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Ylä-Oijala, P., Taskinen, M.: Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects. IEEE Antennas and Propagation 53, 3316–3325 (2005) Taskinen and Vanska [2007] Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000)
- Costabel, M., Louër, F.L.: On the Kleinman–Martin integral equation method for electromagnetic scattering by a dielectric body. SIAM J. Appl. Math. 71, 635–656 (2011) Colton and Kress [2019] Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 4th edn. Springer, (2019) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations. Springer, (2001) Epstein and Greengard [2009] Epstein, C., Greengard, L.: Debye sources and the numerical solution of the time harmonic Maxwell equations. Comm. Pure Appl. Math. 63, 413–463 (2009) Ganesh et al. [2014] Ganesh, M., Hawkins, S., Volkov, D.: An all-frequency weakly-singular surface integral equation for electromagnetism in dielectric media: Reformulation and well-posedness analysis. Journal of Mathematical Analysis and Applications 412(1), 277–300 (2014) Ylä-Oijala and Taskinen [2005] Ylä-Oijala, P., Taskinen, M.: Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects. IEEE Antennas and Propagation 53, 3316–3325 (2005) Taskinen and Vanska [2007] Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 4th edn. Springer, (2019) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations. Springer, (2001) Epstein and Greengard [2009] Epstein, C., Greengard, L.: Debye sources and the numerical solution of the time harmonic Maxwell equations. Comm. Pure Appl. Math. 63, 413–463 (2009) Ganesh et al. [2014] Ganesh, M., Hawkins, S., Volkov, D.: An all-frequency weakly-singular surface integral equation for electromagnetism in dielectric media: Reformulation and well-posedness analysis. Journal of Mathematical Analysis and Applications 412(1), 277–300 (2014) Ylä-Oijala and Taskinen [2005] Ylä-Oijala, P., Taskinen, M.: Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects. IEEE Antennas and Propagation 53, 3316–3325 (2005) Taskinen and Vanska [2007] Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Nédélec, J.-C.: Acoustic and Electromagnetic Equations. Springer, (2001) Epstein and Greengard [2009] Epstein, C., Greengard, L.: Debye sources and the numerical solution of the time harmonic Maxwell equations. Comm. Pure Appl. Math. 63, 413–463 (2009) Ganesh et al. [2014] Ganesh, M., Hawkins, S., Volkov, D.: An all-frequency weakly-singular surface integral equation for electromagnetism in dielectric media: Reformulation and well-posedness analysis. Journal of Mathematical Analysis and Applications 412(1), 277–300 (2014) Ylä-Oijala and Taskinen [2005] Ylä-Oijala, P., Taskinen, M.: Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects. IEEE Antennas and Propagation 53, 3316–3325 (2005) Taskinen and Vanska [2007] Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Epstein, C., Greengard, L.: Debye sources and the numerical solution of the time harmonic Maxwell equations. Comm. Pure Appl. Math. 63, 413–463 (2009) Ganesh et al. [2014] Ganesh, M., Hawkins, S., Volkov, D.: An all-frequency weakly-singular surface integral equation for electromagnetism in dielectric media: Reformulation and well-posedness analysis. Journal of Mathematical Analysis and Applications 412(1), 277–300 (2014) Ylä-Oijala and Taskinen [2005] Ylä-Oijala, P., Taskinen, M.: Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects. IEEE Antennas and Propagation 53, 3316–3325 (2005) Taskinen and Vanska [2007] Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Ganesh, M., Hawkins, S., Volkov, D.: An all-frequency weakly-singular surface integral equation for electromagnetism in dielectric media: Reformulation and well-posedness analysis. Journal of Mathematical Analysis and Applications 412(1), 277–300 (2014) Ylä-Oijala and Taskinen [2005] Ylä-Oijala, P., Taskinen, M.: Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects. IEEE Antennas and Propagation 53, 3316–3325 (2005) Taskinen and Vanska [2007] Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Ylä-Oijala, P., Taskinen, M.: Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects. IEEE Antennas and Propagation 53, 3316–3325 (2005) Taskinen and Vanska [2007] Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000)
- Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 4th edn. Springer, (2019) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations. Springer, (2001) Epstein and Greengard [2009] Epstein, C., Greengard, L.: Debye sources and the numerical solution of the time harmonic Maxwell equations. Comm. Pure Appl. Math. 63, 413–463 (2009) Ganesh et al. [2014] Ganesh, M., Hawkins, S., Volkov, D.: An all-frequency weakly-singular surface integral equation for electromagnetism in dielectric media: Reformulation and well-posedness analysis. Journal of Mathematical Analysis and Applications 412(1), 277–300 (2014) Ylä-Oijala and Taskinen [2005] Ylä-Oijala, P., Taskinen, M.: Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects. IEEE Antennas and Propagation 53, 3316–3325 (2005) Taskinen and Vanska [2007] Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Nédélec, J.-C.: Acoustic and Electromagnetic Equations. Springer, (2001) Epstein and Greengard [2009] Epstein, C., Greengard, L.: Debye sources and the numerical solution of the time harmonic Maxwell equations. Comm. Pure Appl. Math. 63, 413–463 (2009) Ganesh et al. [2014] Ganesh, M., Hawkins, S., Volkov, D.: An all-frequency weakly-singular surface integral equation for electromagnetism in dielectric media: Reformulation and well-posedness analysis. Journal of Mathematical Analysis and Applications 412(1), 277–300 (2014) Ylä-Oijala and Taskinen [2005] Ylä-Oijala, P., Taskinen, M.: Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects. IEEE Antennas and Propagation 53, 3316–3325 (2005) Taskinen and Vanska [2007] Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Epstein, C., Greengard, L.: Debye sources and the numerical solution of the time harmonic Maxwell equations. Comm. Pure Appl. Math. 63, 413–463 (2009) Ganesh et al. [2014] Ganesh, M., Hawkins, S., Volkov, D.: An all-frequency weakly-singular surface integral equation for electromagnetism in dielectric media: Reformulation and well-posedness analysis. Journal of Mathematical Analysis and Applications 412(1), 277–300 (2014) Ylä-Oijala and Taskinen [2005] Ylä-Oijala, P., Taskinen, M.: Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects. IEEE Antennas and Propagation 53, 3316–3325 (2005) Taskinen and Vanska [2007] Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Ganesh, M., Hawkins, S., Volkov, D.: An all-frequency weakly-singular surface integral equation for electromagnetism in dielectric media: Reformulation and well-posedness analysis. Journal of Mathematical Analysis and Applications 412(1), 277–300 (2014) Ylä-Oijala and Taskinen [2005] Ylä-Oijala, P., Taskinen, M.: Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects. IEEE Antennas and Propagation 53, 3316–3325 (2005) Taskinen and Vanska [2007] Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Ylä-Oijala, P., Taskinen, M.: Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects. IEEE Antennas and Propagation 53, 3316–3325 (2005) Taskinen and Vanska [2007] Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000)
- Nédélec, J.-C.: Acoustic and Electromagnetic Equations. Springer, (2001) Epstein and Greengard [2009] Epstein, C., Greengard, L.: Debye sources and the numerical solution of the time harmonic Maxwell equations. Comm. Pure Appl. Math. 63, 413–463 (2009) Ganesh et al. [2014] Ganesh, M., Hawkins, S., Volkov, D.: An all-frequency weakly-singular surface integral equation for electromagnetism in dielectric media: Reformulation and well-posedness analysis. Journal of Mathematical Analysis and Applications 412(1), 277–300 (2014) Ylä-Oijala and Taskinen [2005] Ylä-Oijala, P., Taskinen, M.: Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects. IEEE Antennas and Propagation 53, 3316–3325 (2005) Taskinen and Vanska [2007] Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Epstein, C., Greengard, L.: Debye sources and the numerical solution of the time harmonic Maxwell equations. Comm. Pure Appl. Math. 63, 413–463 (2009) Ganesh et al. [2014] Ganesh, M., Hawkins, S., Volkov, D.: An all-frequency weakly-singular surface integral equation for electromagnetism in dielectric media: Reformulation and well-posedness analysis. Journal of Mathematical Analysis and Applications 412(1), 277–300 (2014) Ylä-Oijala and Taskinen [2005] Ylä-Oijala, P., Taskinen, M.: Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects. IEEE Antennas and Propagation 53, 3316–3325 (2005) Taskinen and Vanska [2007] Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Ganesh, M., Hawkins, S., Volkov, D.: An all-frequency weakly-singular surface integral equation for electromagnetism in dielectric media: Reformulation and well-posedness analysis. Journal of Mathematical Analysis and Applications 412(1), 277–300 (2014) Ylä-Oijala and Taskinen [2005] Ylä-Oijala, P., Taskinen, M.: Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects. IEEE Antennas and Propagation 53, 3316–3325 (2005) Taskinen and Vanska [2007] Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Ylä-Oijala, P., Taskinen, M.: Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects. IEEE Antennas and Propagation 53, 3316–3325 (2005) Taskinen and Vanska [2007] Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000)
- Epstein, C., Greengard, L.: Debye sources and the numerical solution of the time harmonic Maxwell equations. Comm. Pure Appl. Math. 63, 413–463 (2009) Ganesh et al. [2014] Ganesh, M., Hawkins, S., Volkov, D.: An all-frequency weakly-singular surface integral equation for electromagnetism in dielectric media: Reformulation and well-posedness analysis. Journal of Mathematical Analysis and Applications 412(1), 277–300 (2014) Ylä-Oijala and Taskinen [2005] Ylä-Oijala, P., Taskinen, M.: Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects. IEEE Antennas and Propagation 53, 3316–3325 (2005) Taskinen and Vanska [2007] Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Ganesh, M., Hawkins, S., Volkov, D.: An all-frequency weakly-singular surface integral equation for electromagnetism in dielectric media: Reformulation and well-posedness analysis. Journal of Mathematical Analysis and Applications 412(1), 277–300 (2014) Ylä-Oijala and Taskinen [2005] Ylä-Oijala, P., Taskinen, M.: Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects. IEEE Antennas and Propagation 53, 3316–3325 (2005) Taskinen and Vanska [2007] Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Ylä-Oijala, P., Taskinen, M.: Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects. IEEE Antennas and Propagation 53, 3316–3325 (2005) Taskinen and Vanska [2007] Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000)
- Ganesh, M., Hawkins, S., Volkov, D.: An all-frequency weakly-singular surface integral equation for electromagnetism in dielectric media: Reformulation and well-posedness analysis. Journal of Mathematical Analysis and Applications 412(1), 277–300 (2014) Ylä-Oijala and Taskinen [2005] Ylä-Oijala, P., Taskinen, M.: Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects. IEEE Antennas and Propagation 53, 3316–3325 (2005) Taskinen and Vanska [2007] Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Ylä-Oijala, P., Taskinen, M.: Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects. IEEE Antennas and Propagation 53, 3316–3325 (2005) Taskinen and Vanska [2007] Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000)
- Ylä-Oijala, P., Taskinen, M.: Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects. IEEE Antennas and Propagation 53, 3316–3325 (2005) Taskinen and Vanska [2007] Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000)
- Taskinen, M., Vanska, S.: Current and charge integral equation formulations and Picard’s extended Maxwell system. IEEE Antennas and Propagation 55, 3495–3503 (2007) Ganesh and Hawkins [2006] Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000)
- Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006) Ganesh et al. [2019] Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000)
- Ganesh, M., Hawkins, S.C., Volkov, D.: An efficient algorithm for a class of stochastic forward and inverse maxwell models in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. J. Comput. Phys. 398, 10881 (2019) Costabel [1988] Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000)
- Costabel, M.: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19, 613–626 (1988) Sauter and Schwab [2011] Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000)
- Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, (2011) Benzi et al. [2005] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000)
- Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta numerica 14, 1–137 (2005) Nédélec [2001] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000)
- Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems vol. 144. Springer, (2001) Mishchenko and Travis [1994] Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000)
- Mishchenko, M.I., Travis, L.D.: T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16–21 (1994) Kahnert and Rother [2011] Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000)
- Kahnert, M., Rother, T.: Modeling optical properties of particles with small-scale surface roughness: combination of group theory with a perturbation approach. Opt. Express 19, 11138–11151 (2011) Rother et al. [2006] Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000)
- Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V., Gayet, J.-F.: Light scattering on Chebyshev particles of higher order. Appl. Opt. 45, 6030–6037 (2006) Sloan and Womersley [2000] Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000)
- Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. Jornal of Approximation Theory (2000) Wiscombe [1990] Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000)
- Wiscombe, W.J.: Improved Mie scattering algorithms. Applied Optics 19, 1505–1509 (1990) [23] Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000)
- Mishchenko, M.I. https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html. Accessed 8 March 2023. Mishchenko [2000] Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000) Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000)
- Mishchenko, M.I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39, 1026–1031 (2000)